

SWM CONCEPT AND DEVELOPMENT PLAN SUBMISSION CHECKLIST

--Plan Title shall be “ SWM CONCEPT AND DEVELOPMENT PLAN”

--Site and Resource Mapping:

Table 5.1 page 5.7 of SWM design Manual (Discussion of protection & enhancing natural resources present onsite)

--Site Fingerprinting and Development Layout:

- Determine approx. location of buildings, roadways, parking lots and other impervious areas.
- Location of ESD practices

--Better Site Design Technique:

- Discuss one by one all techniques listed in table 5.2

--Determination of final site layout and acreage of total impervious area onsite.

--Proposed topography

--Proposed drainage areas at all points of discharge from the site.

--Proposed SWM volume requirements for ESD targets and quantity control.

--The location and size of ESD practices used to the MEP and all nonstructural, alternative surfaces, and micro-scale practices used.

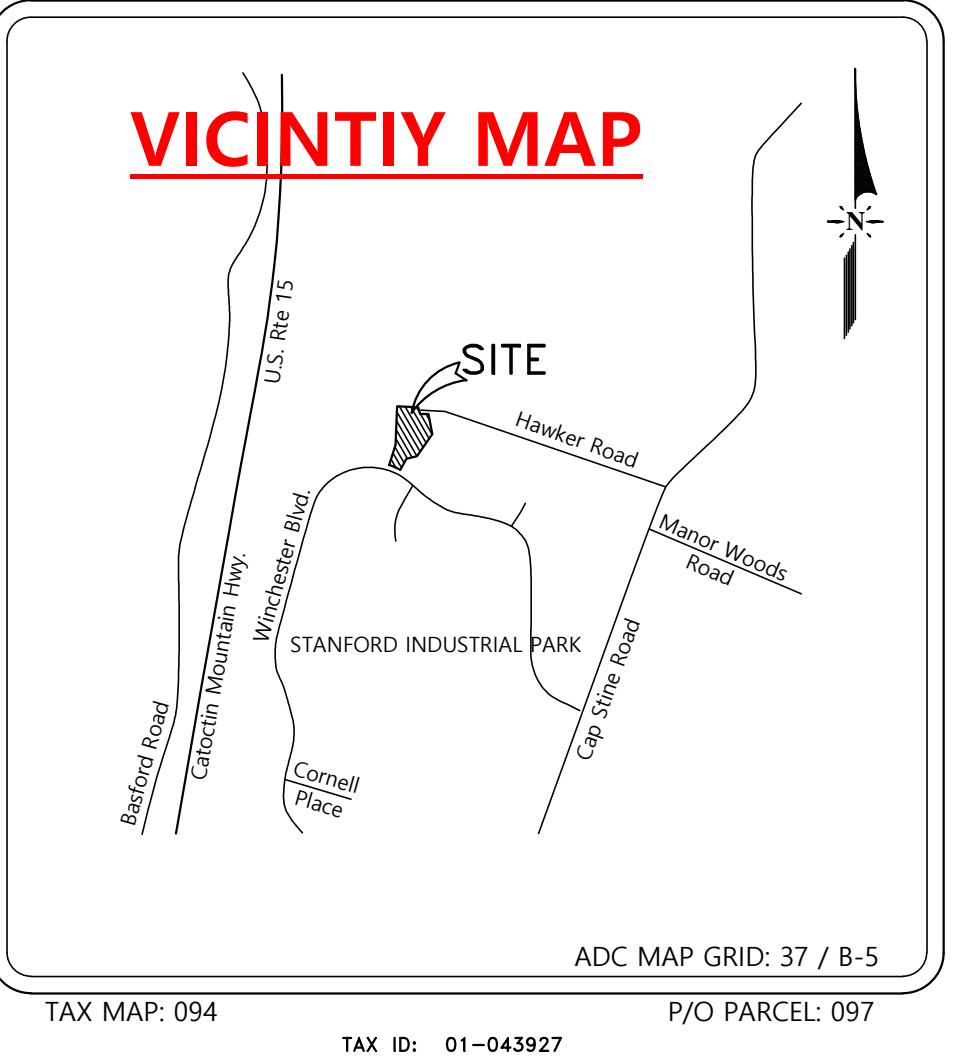
--Proposed hydrology analysis for runoff rates, storage volumes, and discharge velocities.

--SWM design details and specifications.

- Discharge calculations demonstrating stable conveyance of runoff off site.
- Preliminary erosion and sediment control plans showing LOD, sensitive areas, buffers, and forest preservation, proposed phasing, construction sequencing, proposed practices, and stabilization techniques.
- An overlay plan showing the location of SWM ESD practices and proposed erosion and sediment controls.
- A narrative to support the site development design and demonstrate that ESD will be achieved to MEP.

APPLICATION TYPE
or PLAN TITLE:

PROJECT NAME:

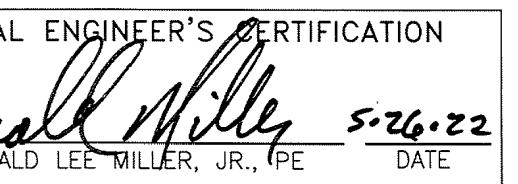

LOCATION OF SITE:

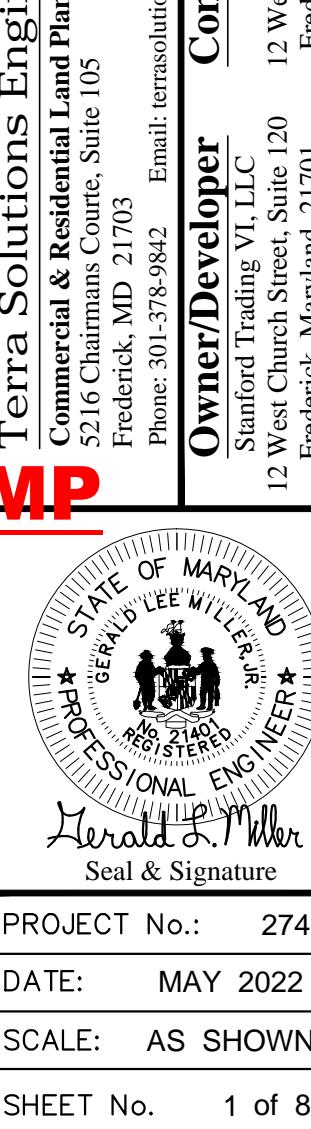
COMBINED SWM CONCEPT & DEVELOPMENT PLAN (PW271185)

FOR

STANFORD INDUSTRIAL PARK - LOT 12 TAX MAP 094, P/O PARCEL 089

SITUATED AT 4870 WINCHESTER BOULEVARD
JEFFERSON ELECTION DISTRICT No. 14
FREDERICK COUNTY, MARYLAND




SHEET INDEX	
TITLE	SHEET No.
COVER SHEET	1
CONCEPT PLAN	2
STORMWATER MANAGEMENT PLAN & PROFILES	3
SWM NOTES & DETAILS SHEET	4
SWM NOTES & DETAILS SHEET	5
EROSION AND SEDIMENT CONTROL PLAN	6
ESC NOTES AND DETAILS	7
DRAINAGE AREA MAP	8

AGENCY FILE REFERENCES:
PROPERTY TAX ID#: 01-043935
FRED. CO. DPPR PROJECT No: PW271185
SITE PLAN FILE No.: SP89-06, A/P#: 266549

APPROVED: SEE COUNTY BLOCK ABOVE for FINAL APPROVAL!

FREDERICK COUNTY, MARYLAND DEVELOPMENT REVIEW, ENGINEERING				
Reviewed in accordance with local County requirements. Frederick County assumes no liability for design and/or construction. Approval is valid for two (2) years from approval date shown above. The plan must be resubmitted to Development Review for final expiration to be considered active. Otherwise, resubmittal of plans, including applicable fees, must be made to Development Review for reapproval. Fees for resubmittal cannot be waived.				
REV. #	DATE	REVISION DESCRIPTION *FILL IN THESE BLOCKS FOR REVISIONS ONLY	ENGINEER/CONSULTANT DATE AND INITIAL	DEV. REVIEW DATE AND INITIAL

File#: SP 89-06	
A/P #: PW271185	
Due Date:	
PROFESSIONAL ENGINEER'S CERTIFICATION	
SIGNED BY:	
GERALD LEE MILLER, JR. P.E. DATE	
MD LICENSE No: 21401, P.E. EXPIRATION DATE: 11-09-22	
I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND.	

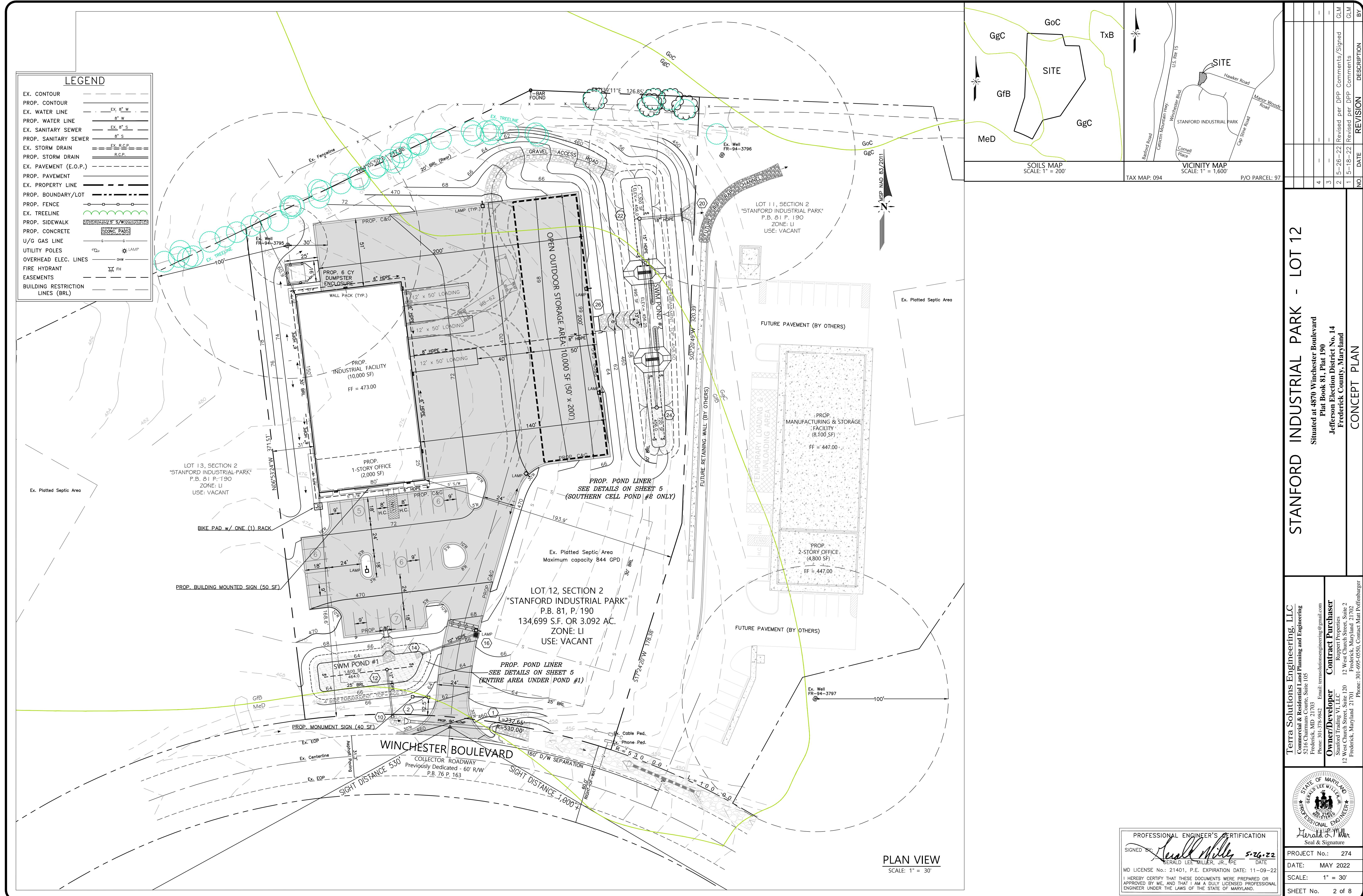
GENERAL NOTES

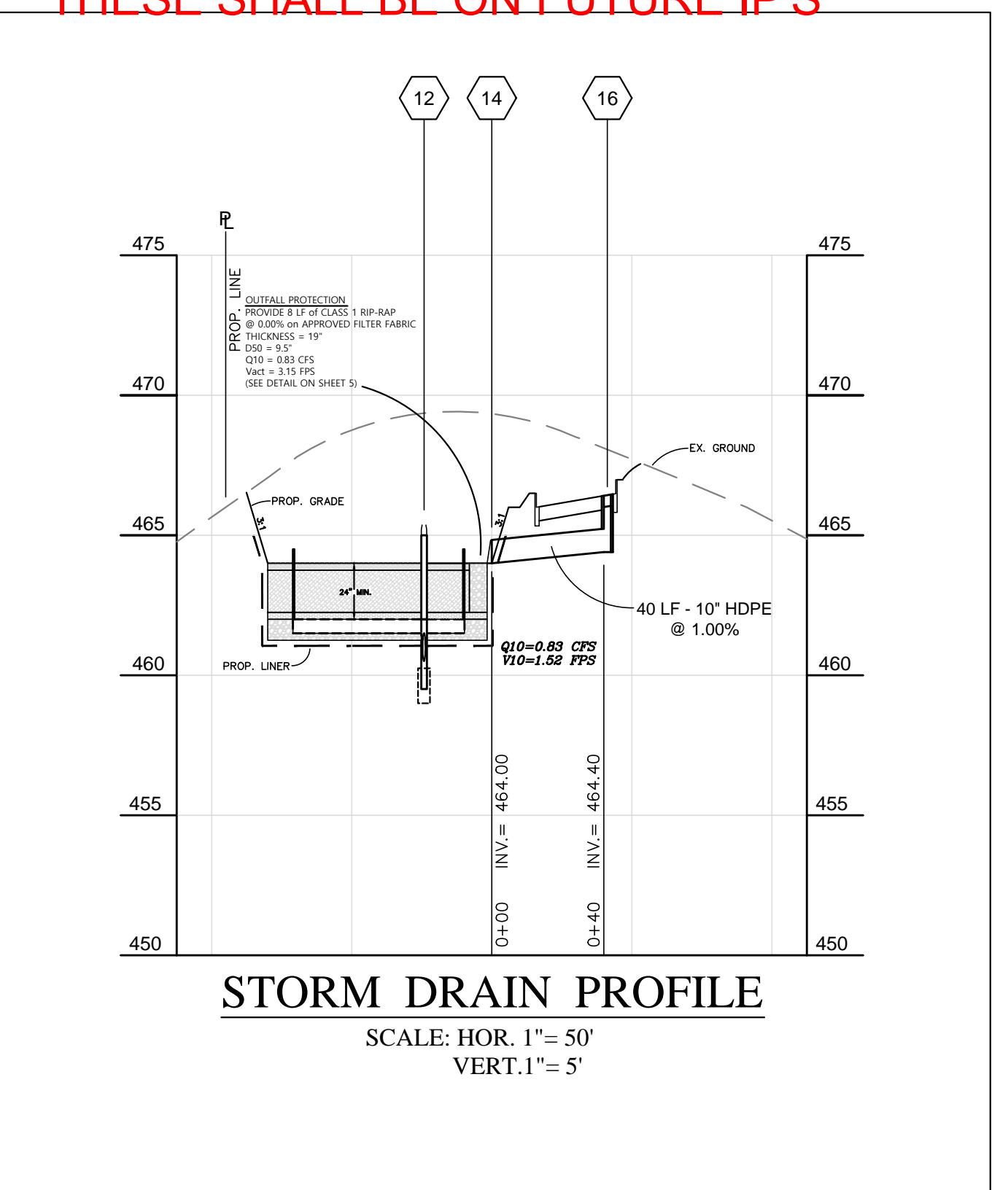
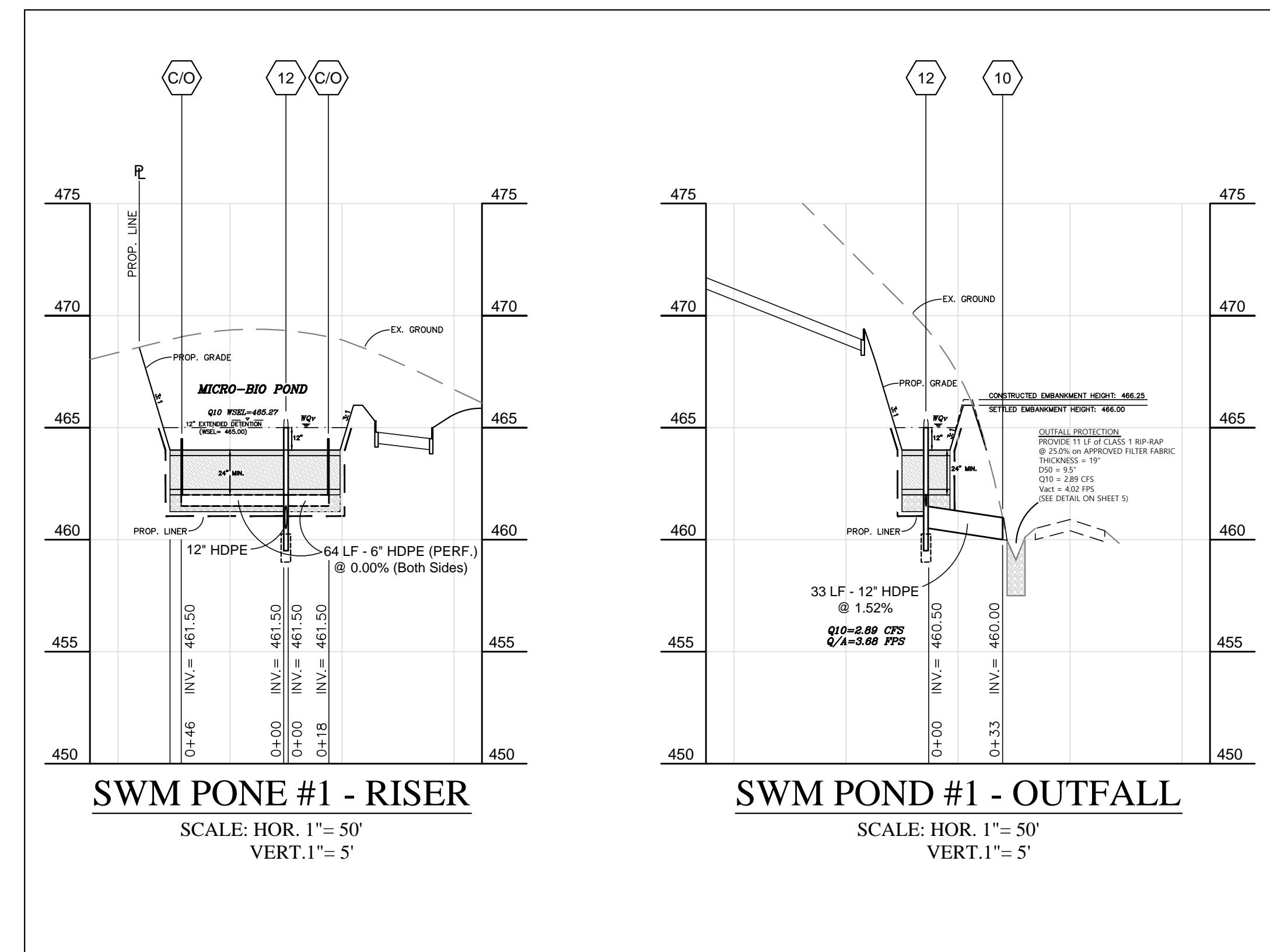
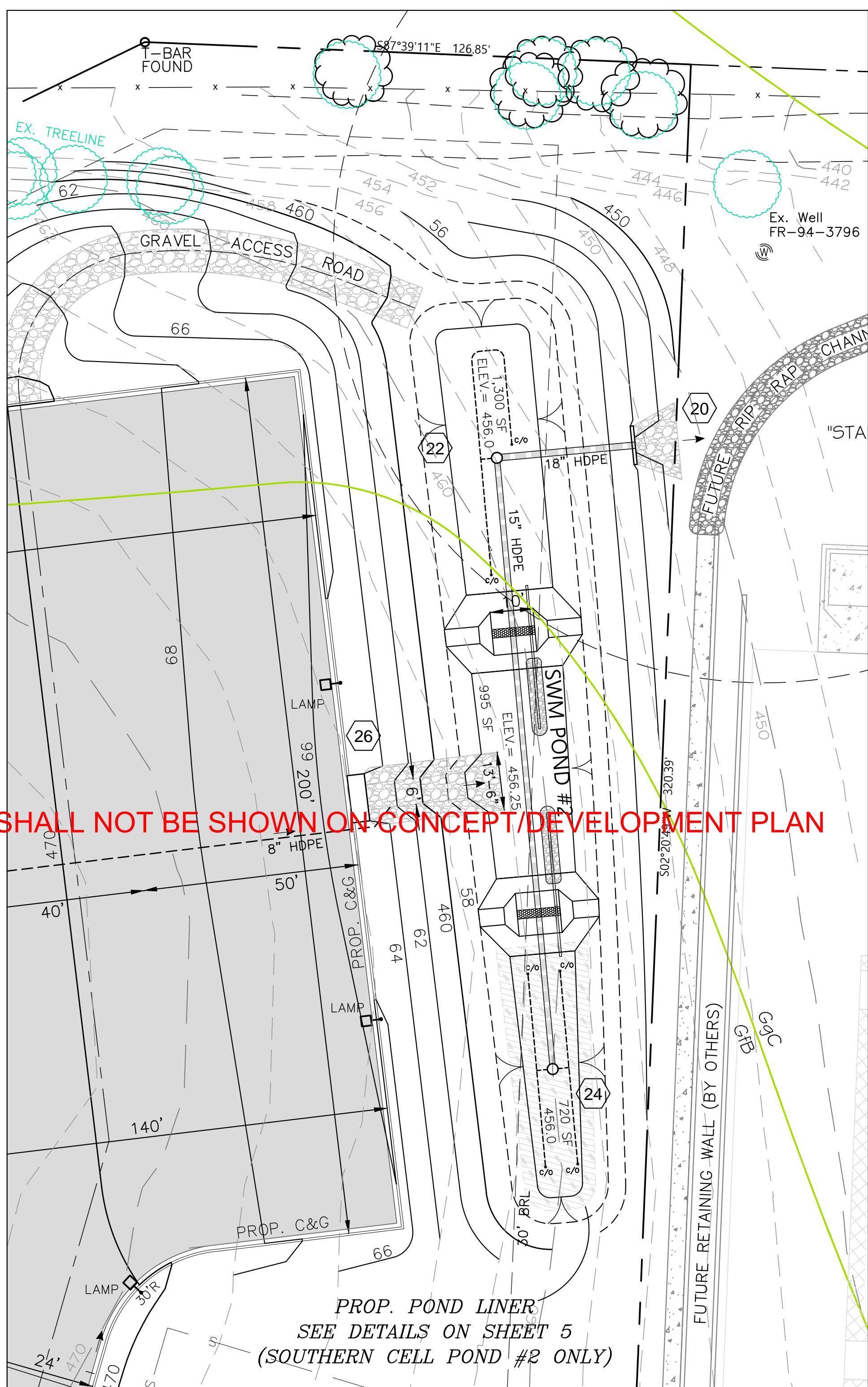
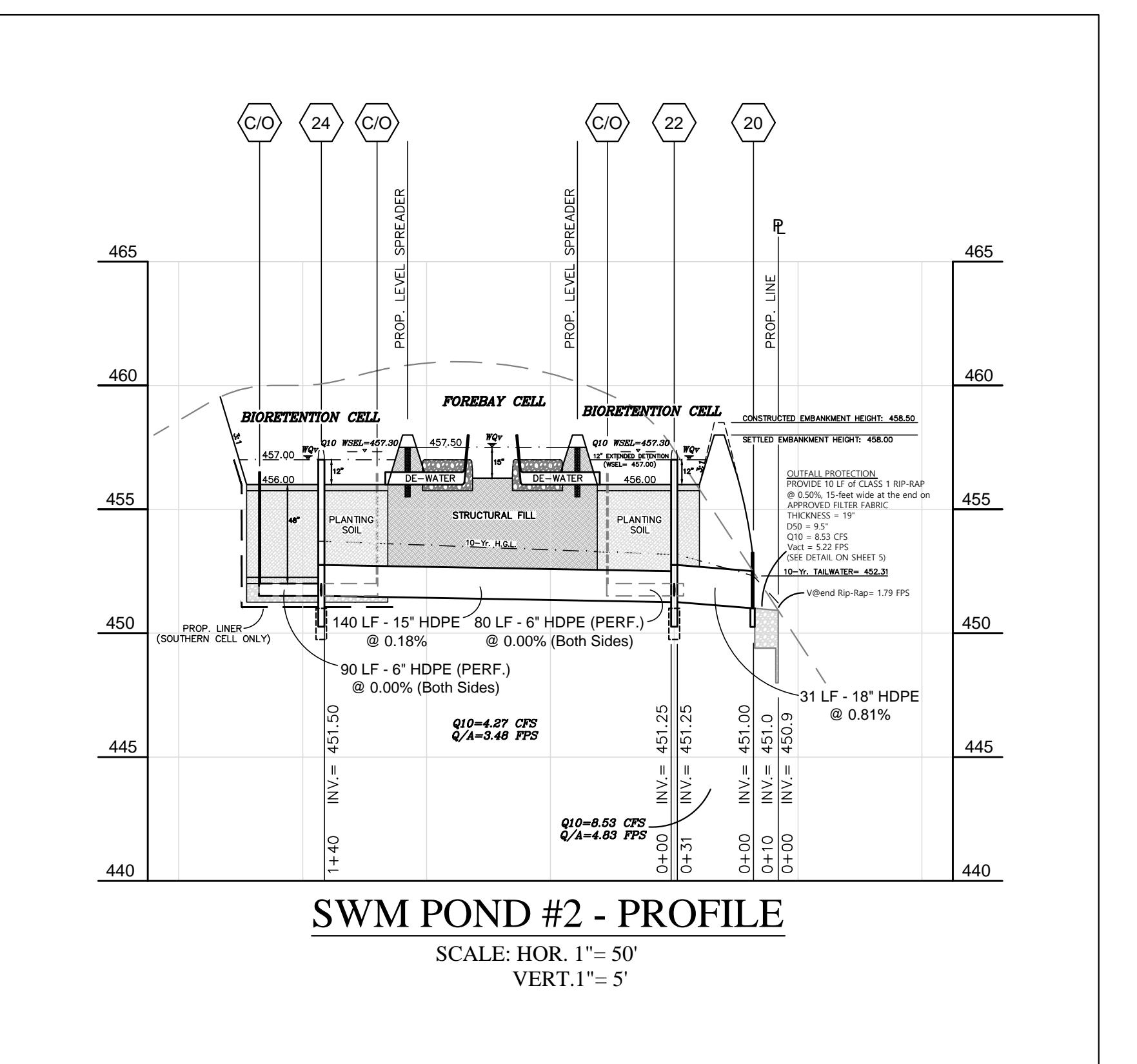
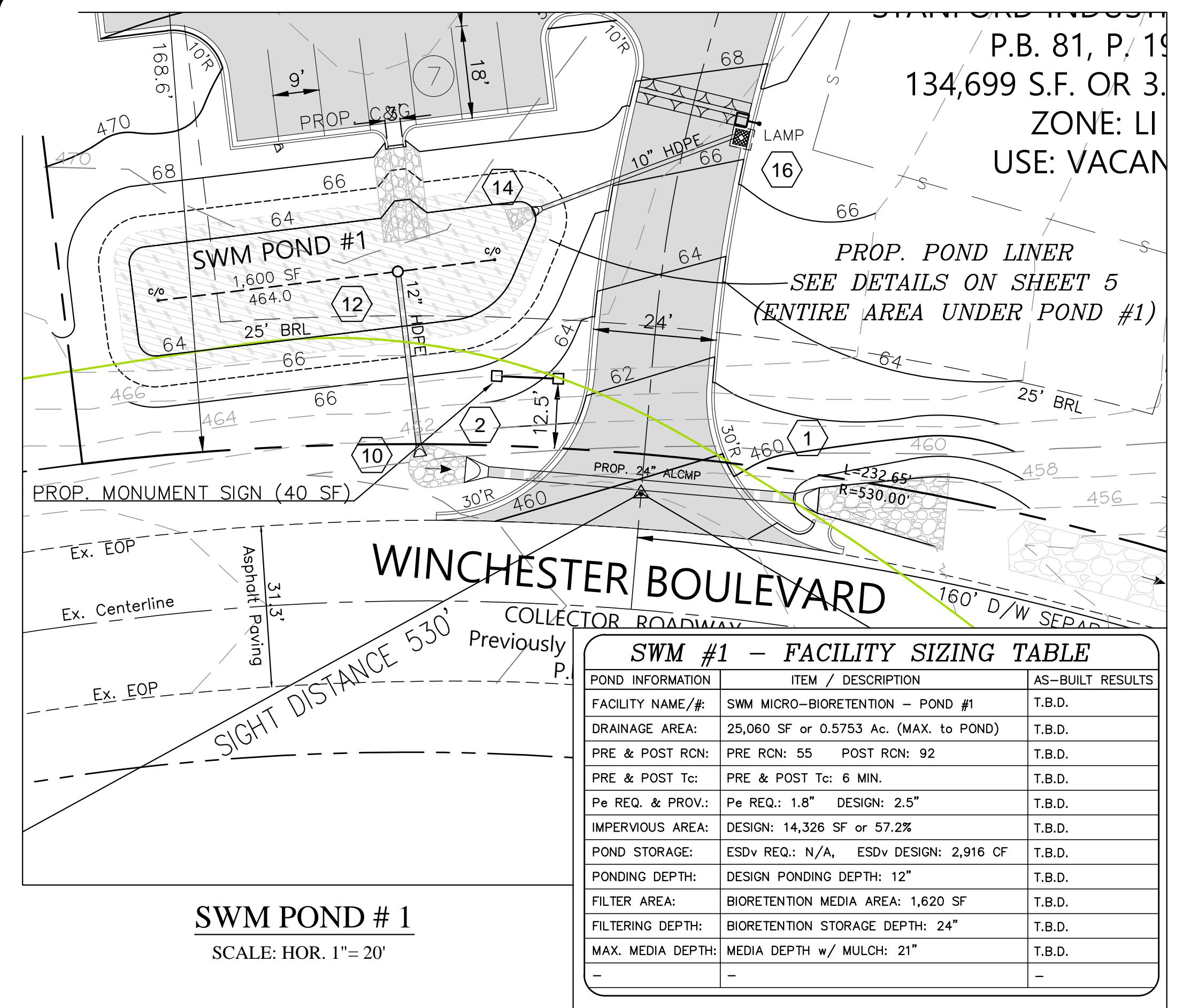
- The property is currently owned by Stanford Trading VI, LLC and is designated on Tax Map 94 as P/O Parcel 89. The deed reference for the property is Liber 6721 at Folio 199. The platted property area is 134,699 square feet or 3.092 acres, and can be found in Tax ID #01-043935.
- Horizontal Datum is NPS NAD 83/2011. Vertical Datum is NAVD 88. Survey by Lavelle and Associates, Inc. (Date: August, 2007)
- This site lies within Zone "X" (0.2% annual chance flood) per FEMA Panel 24021C041D (Effective Date: September 19, 2007).
- Utility locations shown are based on field location supplemented with existing drawings. Their locations should be considered approximate and should be verified before construction begins.
- This plan prepared without the benefit of a Site Report.
- This property is zoned "Limited Industrial" (LI) and is located within the Adamstown Planning Region. The Comprehensive Plan - Land Use is "Limited Industrial" according to Section § 1-19-6.100.

PROPOSED ACTUAL
Minimum lot area: 20,000 SF 134,699 SF or 3.092 Ac. (Along Front Property Line)
Minimum lot width: 100-Ft. 232' 7"
Front: 25' 165' 0"
Side BRL: 30' * 31' 0"
Rear BRL: 20' 60' 9"
Building Height: 60' Maximum * 30' Proposed

7. Soil Types:
Gpc - Glaciolacustrine gravelly loam, 8% to 15% slopes; K-Factor: 0.17; HSG - "B" Lower X Restricted Soil **Not a Wet Soil**
Glb - Glaciolacustrine silt loam, 3% to 8% slopes; K-Factor: 0.37; HSG - "C" Lower X Restricted Soil **Not a Wet Soil**
Meb - Mt. Airy clay loam, 3% to 8% slopes; K-Factor: 2.27; HSG - "D"; Lower X Restricted Soil **Not a Wet Soil**
8. Existing Site Summary:
Total Site Area: = 134,699 SF or 3.092 Ac. 100.0 %
Total Impervious Area: = 0.0 SF or 0.000 Ac. 0.0 %
Remaining Green Space: = 134,699 SF or 3.092 Ac. 100.0 %
9. Water & Sanitary Sewer Category: No Planned Service

10. No wetlands exist or 100-Yr. Floodplain exist on this property!


NO.	DATE	REVISION DESCRIPTION
4	5-26-22	Revised per DPP Comments/Signed
3	5-18-22	Revised per DPP Comments/Signed
2	5-18-22	Revised per DPP Comments/Signed
1	5-18-22	Revised per DPP Comments/Signed






STANFORD INDUSTRIAL PARK - LOT 12	Situated at 4870 Winchester Boulevard Plat Book 81, Plat 190 Jefferson Election District No. 14 Frederick County, Maryland
IMPROVEMENT PLANS - COVER SHEET	

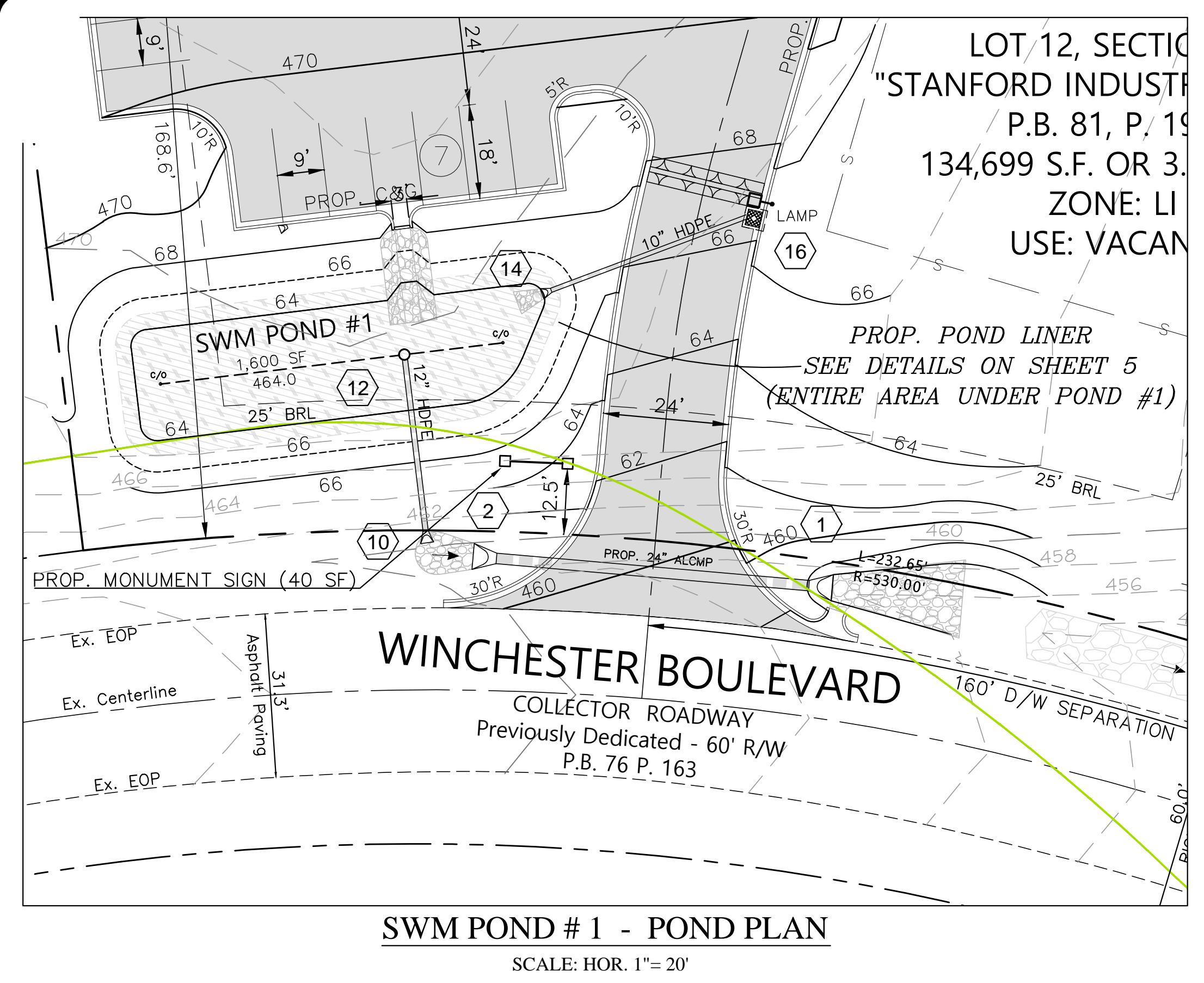
Terra Solutions Engineering, LLC Commercial & Residential Land Planning and Engineering 5216 Chairmans Court, Suite 105 Frederick, MD 21703 Phone: 301-378-9842	Owner/Developer	Contract Purchaser
Ruppert Properties 12 West Church Street, Suite 200 Frederick, Maryland 21702 Phone: 301-695-0550, Contact Matt Portenberger		

ROUTING STAMP

CALL "MISS UTILITY" AT 1-800-257-7777
FOR UTILITY LOCATIONS AT LEAST 48 HOURS
PRIOR TO BEGINNING CONSTRUCTION.

STRUCTURE SCHEDULE					
NO.	STRUCTURE TYPE	STRUCTURE LOCATION	ELEVATIONS	BASE STEP	REMARKS
		ROAD STA.	OFFSET	LOCATION	
10	12" HDPE - END SECTION	-	-	-	MSHA STD. DET. No. MD-370.01 (HDPE)
12	24" ADS NYLOPLAST RISER	-	-	RISER CREST ELEV. = 465.00	ADS CUSTOM RISER
20	18" TYPE "C" ENDWALL	-	-	-	MSHA STD. DET. No. MD-354.01 (18" OPENING)
22	30" ADS NYLOPLAST RISER	-	-	RISER CREST ELEV. = 457.00	ADS CUSTOM RISER
24	30" ADS NYLOPLAST RISER	-	-	RISER CREST ELEV. = 457.00	ADS CUSTOM RISER
26	10"-COG (OPEN-BACK INLET)	-	-	T.C. @ GUTTERLINE = 465.60	MSHA STD. No. MD-374.68 (L=11', T=10', & S=4') REAR INVERT= 464.00
-	24" ALCMP END-SECTION	-	-	-	MSHA STD. No. MD-370.01
2	24" ALCMP END-SECTION	-	-	-	MSHA STD. No. MD-370.01
14	10" HDPE END-SECTION	-	-	T.C. = 467.00 / T.C. = 466.80	MSHA STD. DET. No. MD-370.01 (HDPE)
16	SINGLE WR-INLET	-	-	-	MSHA STD. No. MD-374.23 (GRATE ELEV. = 466.40)

PIPE SCHEDULE			
SIZE	MATERIAL	LENGTH	
6"	HIGH DENSITY POLYETHYLENE (HDPE) - (TYPE "S") (AASHTO M252) - ROOF-DRAIN	456'	
6"	"PERFORATED" HIGH DENSITY POLYETHYLENE (HDPE) - (AASHTO M252) ("4" to "10")	234'	
8"	HIGH DENSITY POLYETHYLENE (HDPE) - (TYPE "S") (AASHTO M252) - ROOF-DRAIN	150'	
12"	HIGH DENSITY POLYETHYLENE (HDPE) - (TYPE "S") (AASHTO M254) ("12" to "60")	33'	
15"	HIGH DENSITY POLYETHYLENE (HDPE) - (TYPE "S") (AASHTO M254) ("12" to "60")	140'	
18"	HIGH DENSITY POLYETHYLENE (HDPE) - (TYPE "S") (AASHTO M254) ("12" to "60")	30'	
24"	ALUMINIZED CORRUGATED METAL PIPE (ALCMP) - TYPE 2	60'	

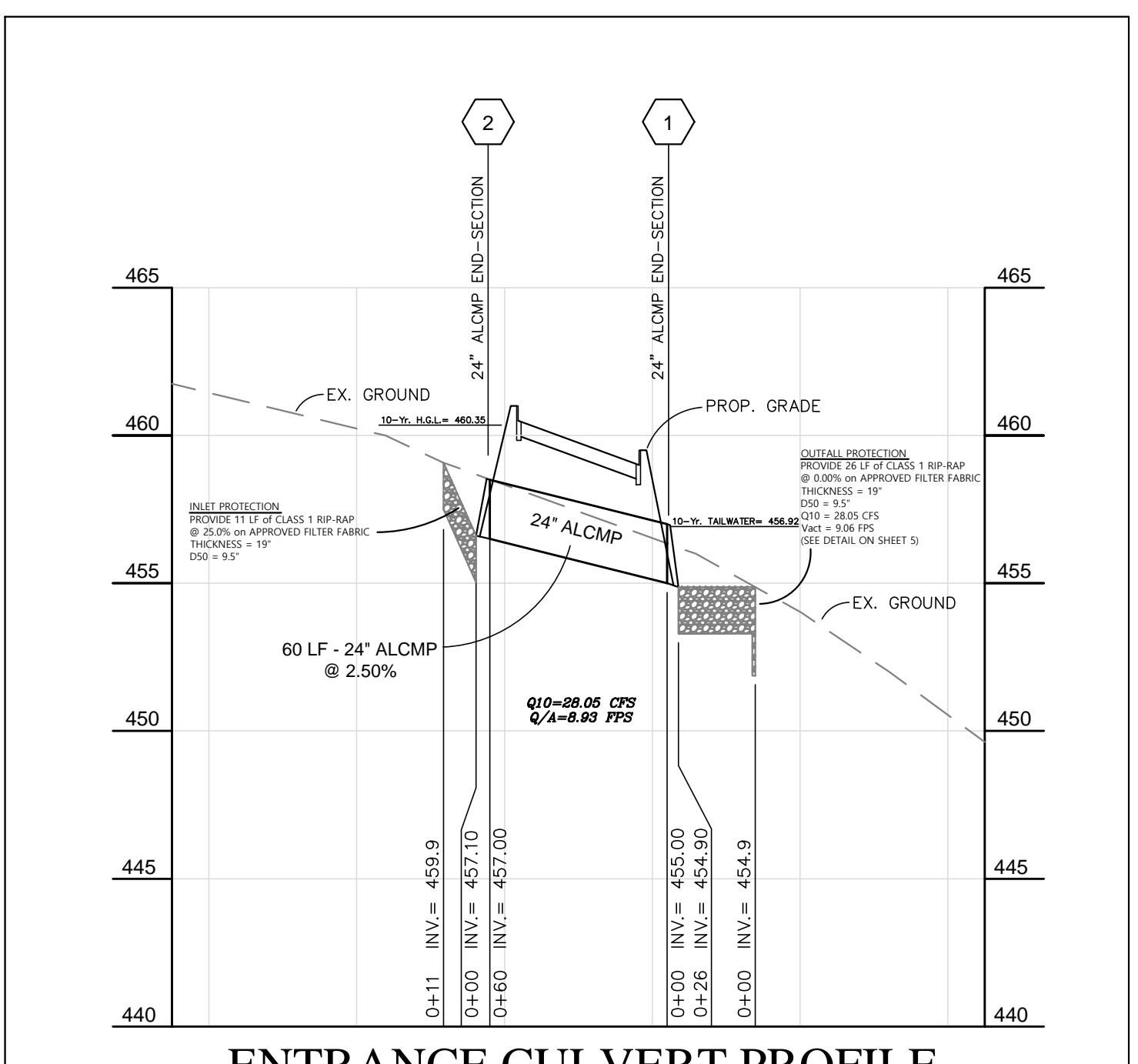

SEE SWM DETAILS ON SHEETS 2 & 3 FOR 6" HDPE UNDERDRAIN PIPE LOCATIONS

PROFESSIONAL ENGINEER'S "AS-BUILT" CERTIFICATION
I hereby certify that the facility shown on this plan as being constructed in conformance with the signed Improvement Plans and as highlighted on the as-built plans provided.

SIGNED BY: *Seal of Maryland*
Signature: *Seal of Maryland*
P.E. No. 21401 Date: *5-26-22*

PROFESSIONAL ENGINEER'S CERTIFICATION
SIGNED BY: *Seal of Maryland*
Signature: *Seal of Maryland*
MD LICENSE No. 21401, P.E. EXPIRATION DATE: 11-09-22
I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND.

Owner/Developer	Contract Purchaser	Comments
Terra Solutions Engineering, LLC Commercial & Residential Land Planning and Engineering 5216 Chairmans Court, Suite 105 Stanford Trading VI, LLC 12 West Church Street, Suite 210 Frederick, Maryland 21701	Ruppert Properties 12 West Church Street, Suite 210 Frederick, Maryland 21701	Phone: 301-378-9842 Email: terra@terraengineering@gmail.com
Owner/Developer	Contract Purchaser	
Stanford Trading VI, LLC 12 West Church Street, Suite 210 Frederick, Maryland 21701	Ruppert Properties 12 West Church Street, Suite 210 Frederick, Maryland 21701	Phone: 301-378-9842 Email: terra@terraengineering@gmail.com
Project No.: 274		
Date: MAY 2022		
Scale: AS SHOWN		
Sheet No. 3 of 8		

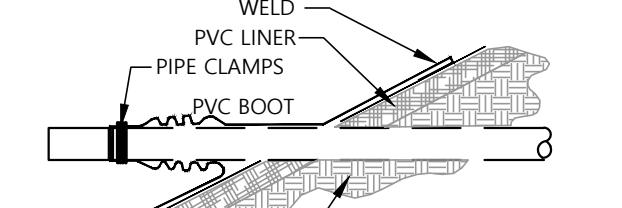


SWM POND #1 - POND PLAN

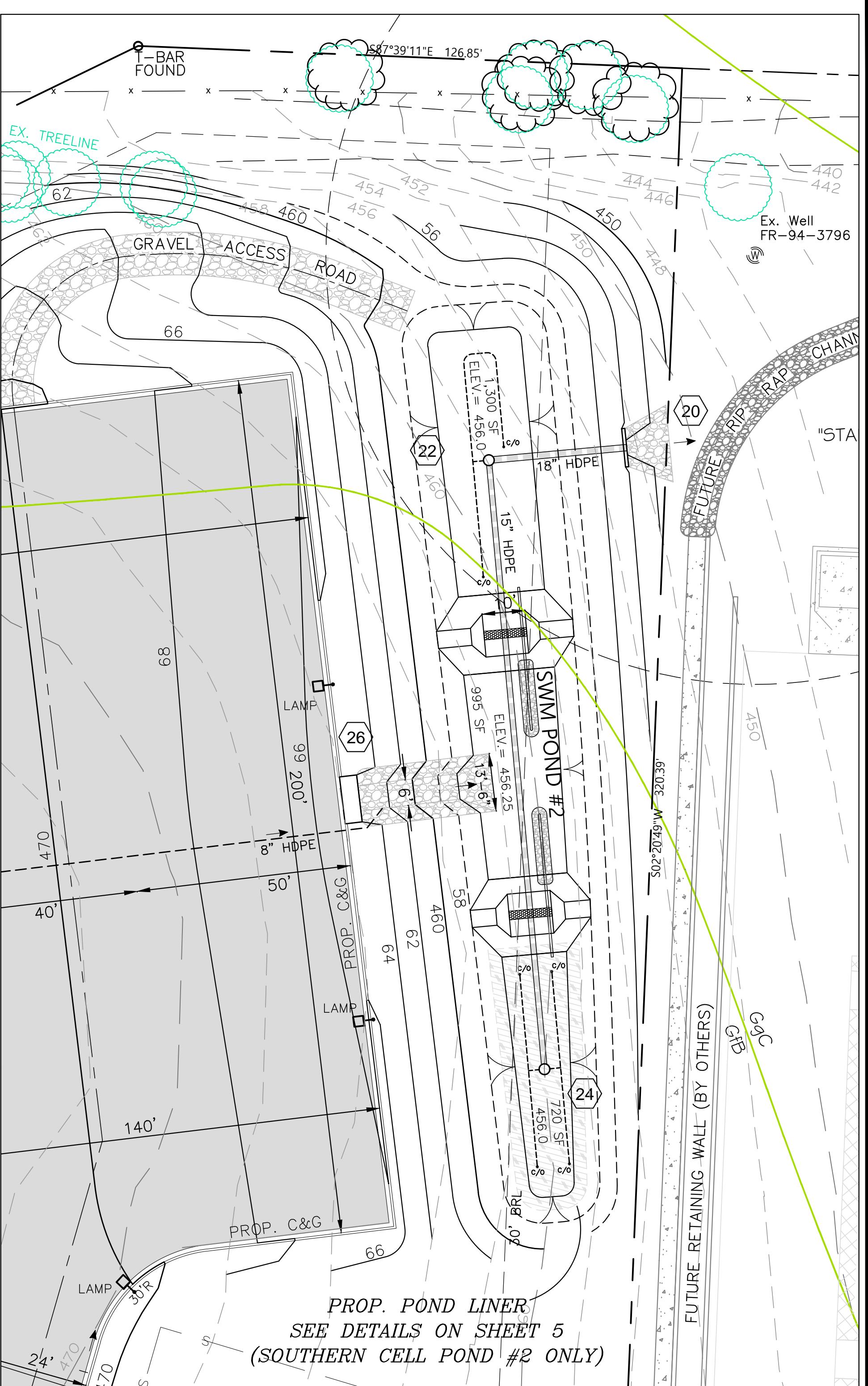
SCALE: HOR. 1" = 20'

* A liner is required under SWM #1 and the southern portion of SWM #2 "ONLY"!

SWM/ESD LINER ALTERNATIVES



ENTRANCE CULVERT PROFILE


SCALE: HOR. 1" = 50'
VERT. 1" = 5'

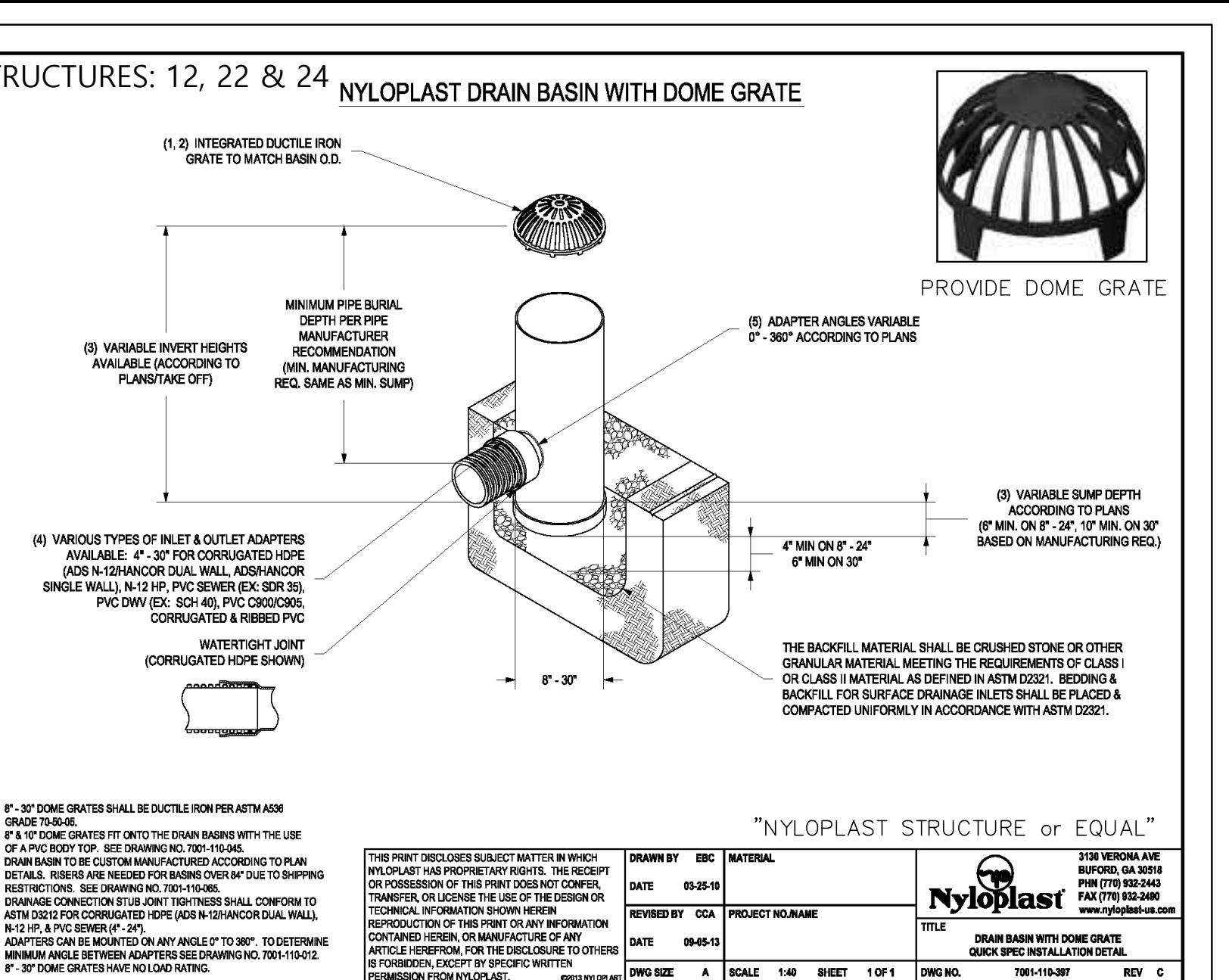
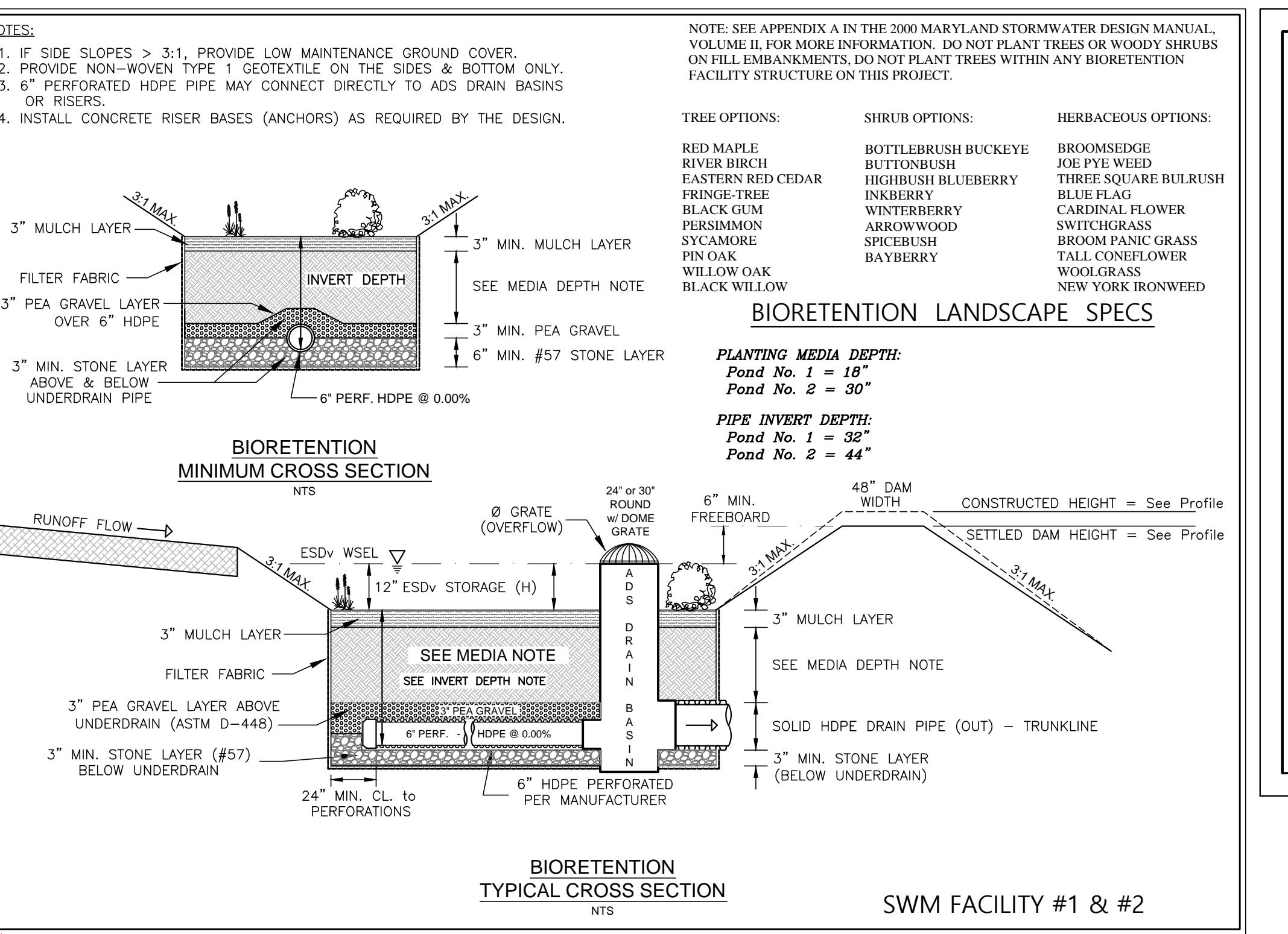
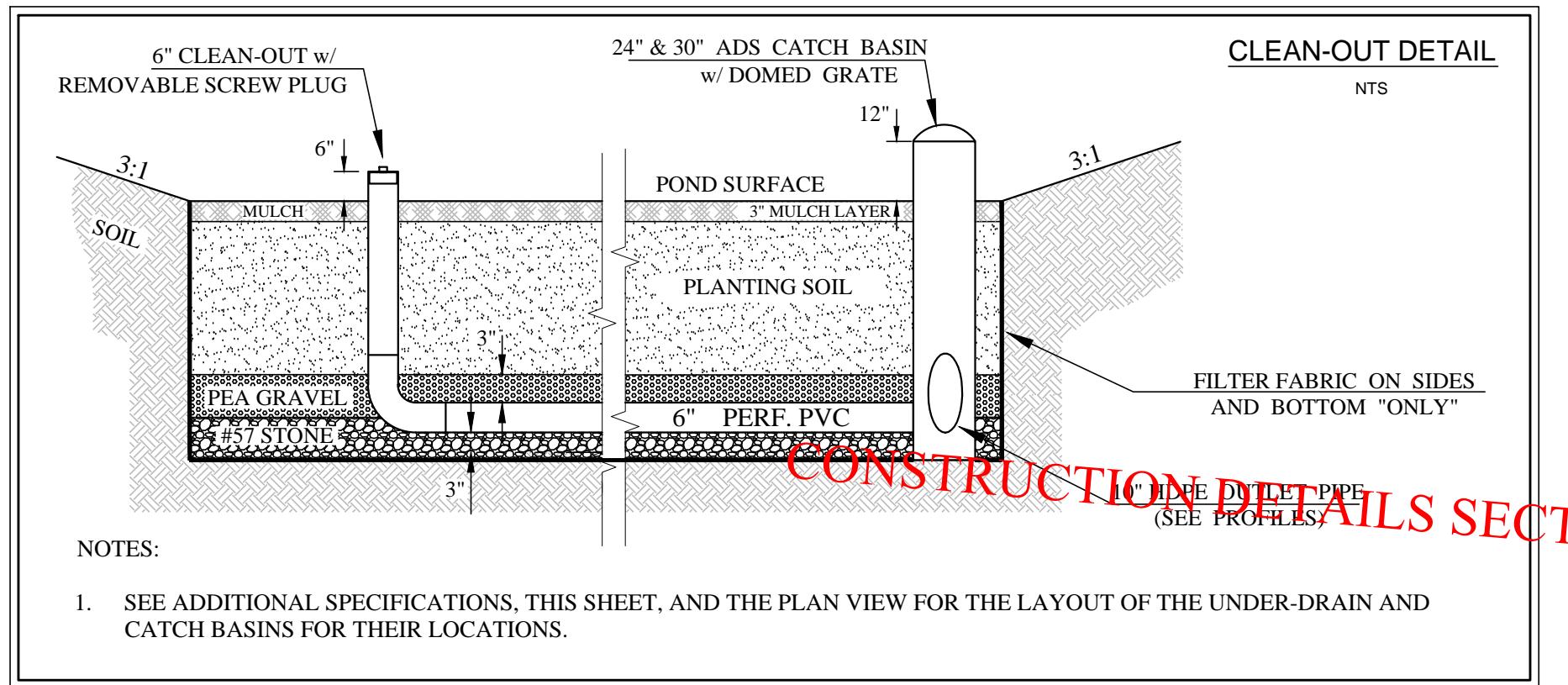
ALTERNATIVE #1		ALTERNATIVE #2A/B		ALTERNATIVE #3	
Material	Specification/Test Method	Liner Thickness	Notes		
ALTERNATIVE #1 Impermeable 12" clay liner w/ protective soil cover	ASTM-D5887 (Hydraulic conductivity: 1 x 10 ⁻¹⁰ cm/sec max.)	12" clay liner	A geotextile fabric should be used to protect liner from material from above. Clay material shall be certified by Geotechnical Engineer.		
ALTERNATIVE #2A Textured HDPE liner w/ protective soil cover	GRI GM13- HDPE Geomembranes ASTM-D6392 (Seam shear strength: 57 lb/in, Seam peel strength: 45 lb/in, peel strength break shall occur in ductile mode in geomembrane adjacent to seam)	30 mil thickness	Installation of flexible membrane shall be in accordance with the manufacturer recommendations. HDPE shall be textured not smooth. A geotextile fabric should be used to protect liner from puncture from above.		
ALTERNATIVE #2B PVC liner w/ protective soil cover	ASTM-D7176- Non-reinforced PVC Geomembranes ASTM-D882 (Seam shear strength: 58 lb/in, Seam peel strength: 15 lb/in)	30 mil thickness	Installation of flexible membrane shall be in accordance with the manufacturer recommendations. A geotextile fabric should be used to protect liner from puncture from above.		
ALTERNATIVE #3 Impermeable geosynthetic clay liner (GCL) w/ protective soil cover	ASTM-D5993 (Bentonite mass: > 0.75 lb/sq.ft.) ASTM-D2226 (max moisture content: 40% dry weight basis) ASTM-D5890 (max swell index: 24 ml per 2 grams) ASTM-D5891 (max fluid loss: 18 ml) ASTM-D5887 (max. index flux: 1x10 ⁻⁸ m ² /m ² s for geotextile backed and 1x10 ⁻⁹ m ² /m ² s for geomembrane or geofilm backed at 2 psi or 4.6 feet of head)	0.75 lbs./sq.ft.	Non- or lightly-reinforced GCLs intended by the manufacturer for use on flat or nearly flat areas shall not be used. Examples of acceptable needle punched & adhesive bound GCL liners: Bentomat Cl, GundSeal Textured HDPE, GundSeal ContainMat or Approved Equal		

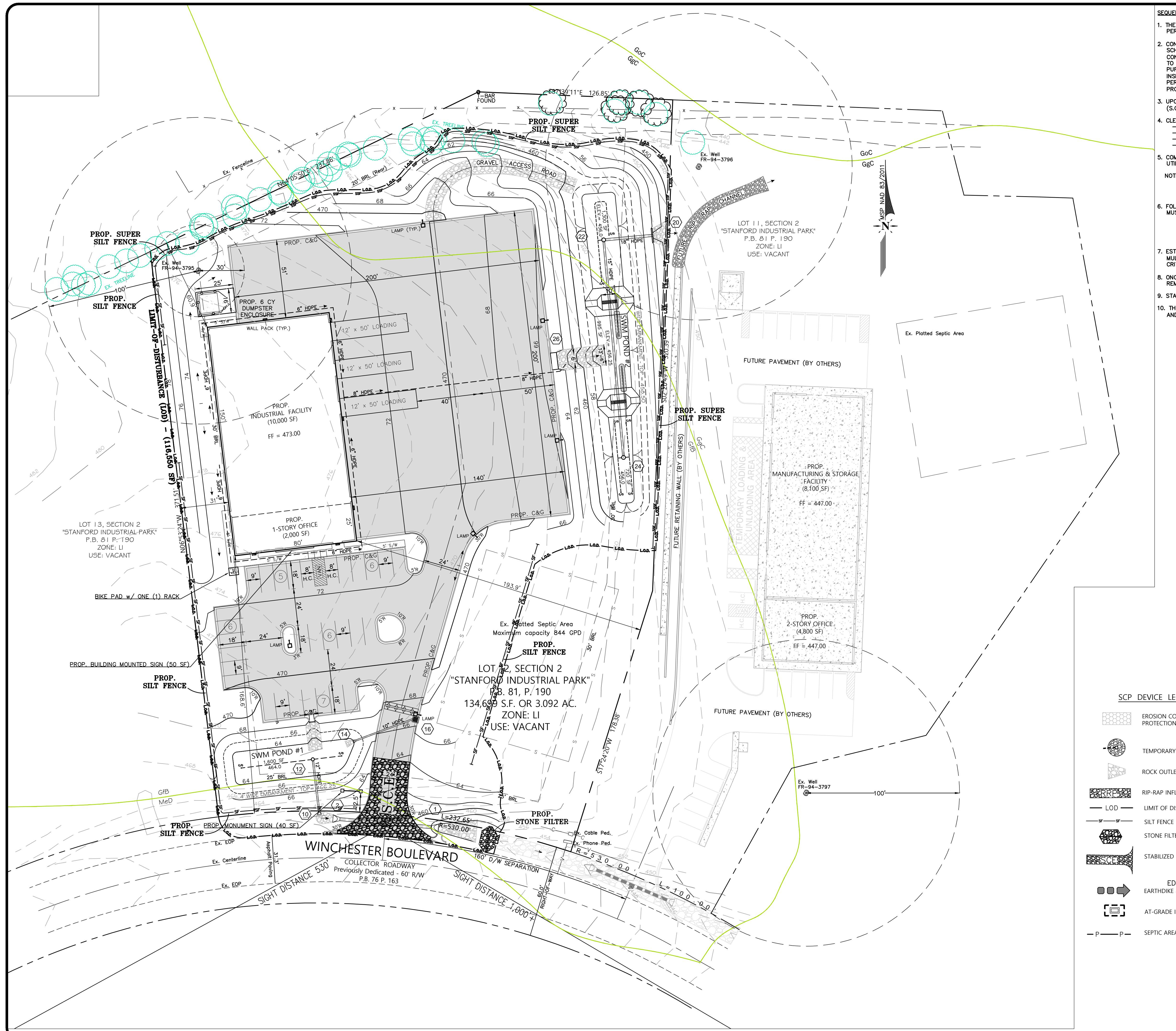
NOTES: See NRCS Practice Standard 521A "Pond Sealing or Lining- Flexible Membrane" for installation of Geomembranes and alternatives.
See NRCS National Standard Materials Specification, Material Specification 594- Geomembrane Liner for more specifications
See NRCS National Standard Materials Specifications, Material Specification 595- Geosynthetic Clay Liner for more specifications

TYPICAL PVC LINER PIPE BOOT
NTS
NOTE: USE MANUFACTURER'S RECOMMENDATIONS

SWM POND #2 - POND PLAN

SCALE: HOR. 1" = 20'




PROFESSIONAL ENGINEER'S "AS-BUILT" CERTIFICATION	
I hereby certify that the facility shown on this plan as being constructed in conformance with the signed Improvement Plans and as highlighted on the as-built plans provided.	
Signature	Date
P.E. Number: 21401	


PROFESSIONAL ENGINEER'S CERTIFICATION	
SIGNED BY: 5/26/22	
GERALD LEE MILLER, JR. P.E. DATE	
MD LICENSE No.: 21401, P.E. EXPIRATION DATE: 11-09-22	
I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND.	

STANFORD INDUSTRIAL PARK - LOT 12	
Situated at 4870 Winchester Boulevard	
Plat Book 81, Plat 190	
Jefferson Election District No. 14	
Frederick County, Maryland	
STORMWATER MANAGEMENT PLANS, PROFILES, & DETAILS	
NO.	DATE
1	5-18-22 Revised per DPP
2	5-26-22 Revised per DPP
3	5-18-22 Revised per DPP
4	5-26-22 Revised per DPP
5	5-18-22 Revised per DPP
6	5-26-22 Revised per DPP
7	5-18-22 Revised per DPP
8	5-26-22 Revised per DPP
9	5-18-22 Revised per DPP
10	5-26-22 Revised per DPP
11	5-18-22 Revised per DPP
12	5-26-22 Revised per DPP
13	5-18-22 Revised per DPP
14	5-26-22 Revised per DPP
15	5-18-22 Revised per DPP
16	5-26-22 Revised per DPP
17	5-18-22 Revised per DPP
18	5-26-22 Revised per DPP
19	5-18-22 Revised per DPP
20	5-26-22 Revised per DPP
21	5-18-22 Revised per DPP
22	5-26-22 Revised per DPP
23	5-18-22 Revised per DPP
24	5-26-22 Revised per DPP
25	5-18-22 Revised per DPP
26	5-26-22 Revised per DPP
27	5-18-22 Revised per DPP
28	5-26-22 Revised per DPP
29	5-18-22 Revised per DPP
30	5-26-22 Revised per DPP
31	5-18-22 Revised per DPP
32	5-26-22 Revised per DPP
33	5-18-22 Revised per DPP
34	5-26-22 Revised per DPP
35	5-18-22 Revised per DPP
36	5-26-22 Revised per DPP
37	5-18-22 Revised per DPP
38	5-26-22 Revised per DPP
39	5-18-22 Revised per DPP
40	5-26-22 Revised per DPP
41	5-18-22 Revised per DPP
42	5-26-22 Revised per DPP
43	5-18-22 Revised per DPP
44	5-26-22 Revised per DPP
45	5-18-22 Revised per DPP
46	5-26-22 Revised per DPP
47	5-18-22 Revised per DPP
48	5-26-22 Revised per DPP
49	5-18-22 Revised per DPP
50	5-26-22 Revised per DPP
51	5-18-22 Revised per DPP
52	5-26-22 Revised per DPP
53	5-18-22 Revised per DPP
54	5-26-22 Revised per DPP
55	5-18-22 Revised per DPP
56	5-26-22 Revised per DPP
57	5-18-22 Revised per DPP
58	5-26-22 Revised per DPP
59	5-18-22 Revised per DPP
60	5-26-22 Revised per DPP
61	5-18-22 Revised per DPP
62	5-26-22 Revised per DPP
63	5-18-22 Revised per DPP
64	5-26-22 Revised per DPP
65	5-18-22 Revised per DPP
66	5-26-22 Revised per DPP
67	5-18-22 Revised per DPP
68	5-26-22 Revised per DPP
69	5-18-22 Revised per DPP
70	5-26-22 Revised per DPP
71	5-18-22 Revised per DPP
72	5-26-22 Revised per DPP
73	5-18-22 Revised per DPP
74	5-26-22 Revised per DPP
75	5-18-22 Revised per DPP
76	5-26-22 Revised per DPP
77	5-18-22 Revised per DPP
78	5-26-22 Revised per DPP
79	5-18-22 Revised per DPP
80	5-26-22 Revised per DPP
81	5-18-22 Revised per DPP
82	5-26-22 Revised per DPP
83	5-18-22 Revised per DPP
84	5-26-22 Revised per DPP
85	5-18-22 Revised per DPP
86	5-26-22 Revised per DPP
87	5-18-22 Revised per DPP
88	5-26-22 Revised per DPP
89	5-18-22 Revised per DPP
90	5-26-22 Revised per DPP
91	5-18-22 Revised per DPP
92	5-26-22 Revised per DPP
93	5-18-22 Revised per DPP
94	5-26-22 Revised per DPP
95	5-18-22 Revised per DPP
96	5-26-22 Revised per DPP
97	5-18-22 Revised per DPP
98	5-26-22 Revised per DPP
99	5-18-22 Revised per DPP
100	5-26-22 Revised per DPP
101	5-18-22 Revised per DPP
102	5-26-22 Revised per DPP
103	5-18-22 Revised per DPP
104	5-26-22 Revised per DPP
105	5-18-22 Revised per DPP
106	5-26-22 Revised per DPP
107	5-18-22 Revised per DPP
108	5-26-22 Revised per DPP
109	5-18-22 Revised per DPP
110	5-26-22 Revised per DPP
111	5-18-22 Revised per DPP
112	5-26-22 Revised per DPP
113	5-18-22 Revised per DPP
114	5-26-22 Revised per DPP
115	5-18-22 Revised per DPP
116	5-26-22 Revised per DPP
117	5-18-22 Revised per DPP
118	5-26-22 Revised per DPP
119	5-18-22 Revised per DPP
120	5-26-22 Revised per DPP
121	5-18-22 Revised per DPP
122	5-26-22 Revised per DPP
123	5-18-22 Revised per DPP
124	5-26-22 Revised per DPP
125	5-18-22 Revised per DPP
126	5-26-22 Revised per DPP
127	5-18-22 Revised per DPP
128	5-26-22 Revised per DPP
129	5-18-22 Revised per DPP
130	5-26-22 Revised per DPP
131	5-18-22 Revised per DPP
132	5-26-22 Revised per DPP
133	5-18-22 Revised per DPP
134	5-26-22 Revised per DPP
135	5-18-22 Revised per DPP
136	5-26-22 Revised per DPP
137	5-18-22 Revised per DPP
138	5-26-22 Revised per DPP
139	5-18-22 Revised per DPP
140	5-26-22 Revised per DPP
141	5-18-22 Revised per DPP
142	5-26-22 Revised per DPP
143	5-18-22 Revised per DPP
144	5-26-22 Revised per DPP
145	5-18-22 Revised per DPP
146	5-26-22 Revised per DPP
147	5-18-22 Revised per DPP
148	5-26-22 Revised per DPP
149	5-18-22 Revised per DPP
150	5-26-22 Revised per DPP
151	5-18-22 Revised per DPP
152	5-26-22 Revised per DPP
153	5-18-22 Revised per DPP
154	5-26-22 Revised per DPP
155	5-18-22 Revised per DPP
156	5-26-22 Revised per DPP
157	5-18-22 Revised per DPP
158	5-26-22 Revised per DPP
159	5-18-22 Revised per DPP
160	5-26-22 Revised per DPP
161	5-18-22 Revised per DPP
162	5-26-22 Revised per DPP
163	5-18-22 Revised per DPP
164	5-26-22 Revised per DPP
165	5-18-22 Revised per DPP
166	5-26-22 Revised per DPP
1	

Table B.3.2 Material Specifications for Bioretention

Material	Specification/Test Method	Size	Notes
Plantings	see Appendix A, Table A.4	n/a	plantings are site-specific
Planting Soil [15" deep]	sand (35 - 40%), compost (15 - 20%), silt (30 - 35%), & clay (10 - 15%)	n/a	USDA soil types loamy sand, sandy loam or loam; clay content < 5%
Mulch	shredded hardwood	n/a	aged 6 months, minimum; no pine or wood chips
geotextile fabric (if required)	ASTM D-433 (puncture strength = 126 lb.) ASTM D-4632 (tensile strength = 300 lb.)	0.08" thick equivalent opening size of #80 sieve	Must maintain 125 gpm per sq. ft. flow rate. Note: a 3" pea gravel layer may be substituted for geotextiles meant to "separate" sand filter layers.
Under-drain gravel (under-drains and infiltration berms)	AASHTO-M-43	No. 57 or No. 6 Aggregate (#3 to #7)	n/a
underdrain piping	F 758, Type PS 28 or AASHTO-M-278	4" - 6" rigid schedule 40 PVC or SDR35	Slotted or perforated pipe; 3/8" perf. @ 6" on center, 4 holes per row, minimum of 3" gravel over & under pipe; stone depth underneath pipes can vary depending groundwater recharge volume requirements.
sand	clean AASHTO-M-6 or ASTM-C-33 concrete sand	0.02" to 0.04"	Sand substitutes such as Diabase and Graystone #10 are not acceptable. No calcium carbide or dolomitic sand substitutions are acceptable. No "rock dust" can be used for sand.
concrete (cast-in-place)	MSHA Standards and Specs, Section 902, Mix No. 3, for 3,500 psi, normal weight, air-entrained; reinforcing to meet ASTM 615-60	n/a	on-site testing of poured-in-place concrete required; 28 day strength and slump tests of concrete design (cast-in-place or pre-cast) not using previously approved State or local standards requires design drawings sealed and approved by a professional structural engineer licensed in the state of Maryland.
concrete (pre-cast)	per pre-cast manufacturer	n/a	SEE ABOVE NOTE
rebar steel	ASTM A-36	n/a	structural steel to be hot-dipped galvanized ASTM A-123

SEQUENCE OF CONSTRUCTION:

THE CONTRACTOR SHALL NOTIFY MISS UTILITY AT 1-800-257-7777 AT LEAST 3 WORKING DAYS BEFORE PERFORMING ANY WORK.

CONTACT THE FREDERICK COUNTY ENVIRONMENTAL COMPLIANCE SECTION (ECS) AT 301-600-3507 TO SCHEDULE A PRE-CONSTRUCTION MEETING AT LEAST 48 HOURS PRIOR TO THE COMMENCEMENT OF ANY CONSTRUCTION ACTIVITIES. THE LIMITS-OF-DISTURBANCE (LOD) IDEALLY SHOULD BE STAKED-OUT PRIOR TO THE PRE-CONSTRUCTION MEETING. ALSO, FOREST CONSERVATION MITIGATION SHALL BE APPROVED PURSUANT TO THE APPROVED FOREST CONSERVATION PLAN PRIOR TO THE MEETING. BOTH MUST BE INSPECTED AND APPROVED BY THE INSPECTOR PRIOR TO BEGINNING ANY GRADING. AN MDE NPDES/NOI PERMIT IS REQUIRED SINCE THIS PROJECT WILL DISTURB MORE THAN 1.0 ACRE, AND A COPY SHOULD BE PROVIDED TO THE SOIL CONSERVATION DISTRICT (SCD) ONCE AVAILABLE.

UPON INSPECTOR APPROVAL, CLEAR, GRUB, AND INSTALL THE STABILIZED CONSTRUCTION ENTRANCES (S.C.E.) AS INDICATED ON THE APPROVED SEDIMENT CONTROL PLAN (SCP).

CLEAR, GRUB, AND INSTALL PERIMETER CONTROLS AS INDICATED ON THE SCP, IN THIS ORDER:

- STONE FILTER
- SEPTIC FIELD PROTECTION FENCING
- SUPER SILT FENCE & SILT FENCE
- STOCKPILE AREA - SILT FENCING

COMMENCE WITH SITE IMPROVEMENTS INCLUDING: SITE GRADING, INSTALLATION OF UNDERGROUND UTILITIES, NEW BUILDING CONSTRUCTION, GRAVEL PARKING INSTALLATION, BIORETENTION PONDS, ETC.

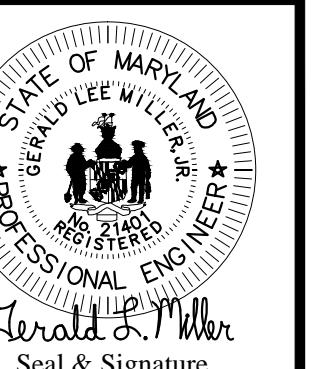
NOTE: SWM FACILITIES AND THEIR EXCAVATION SHALL BE PROTECTED FROM SEDIMENT AND BE INSTALLED LAST, IF POSSIBLE. IT MAY BE NECESSARY TO INSTALL TEMPORARY SILT-FENCE ABOVE THE SWM FACILITY TO ALLOW THE SLOPES TO GERMINATE AND BECOME STABILE, PRIOR TO RUNOFF ENTERING THE NEW FACILITY.

FOLLOWING INITIAL SOIL DISTURBANCE OR RE-DISTURBANCE, PERMANENT OR TEMPORARY STABILIZATION MUST BE COMPLETED WITHIN:

- A. THREE (3) CALENDAR DAYS AS TO THE SURFACE OF ALL PERIMETER DIKES, SWALES, DITCHES, PERIMETER SLOPES STEEPER THAN 3 HORIZONTAL TO 1 VERTICAL (3:1), AND
- B. SEVEN (7) CALENDAR DAYS AS TO ALL OTHER DISTURBED OR GRADED AREAS ON PROJECT SITE NOT UNDER ACTIVE GRADING.

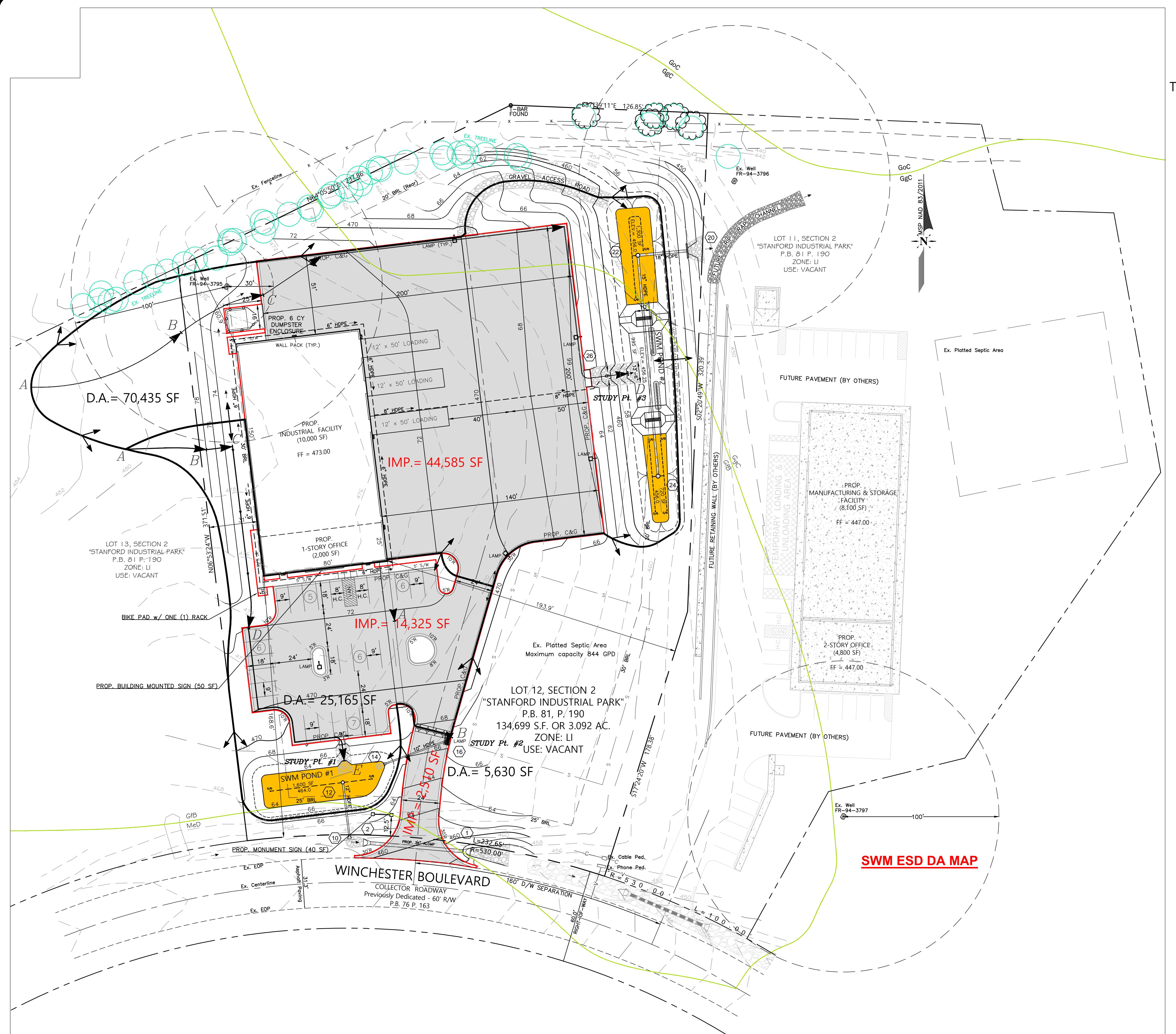
ESTABLISH STOCKPILE AREAS, AS NECESSARY, SURROUNDED BY SILT FENCE. TEMPORARILY SEED AND MULCH ALL STOCKPILES WITHIN THE 3/7 DAY REQUIREMENT. ALSO, SEE THE INCREMENTAL STABILIZATION CRITERIA.

ONCE CONSTRUCTION IS COMPLETE AND THE SITE IS STABILIZED, AND WITH THE INSPECTOR'S APPROVAL, REMOVE ALL REMAINING EROSION AND SEDIMENT CONTROL DEVICES.

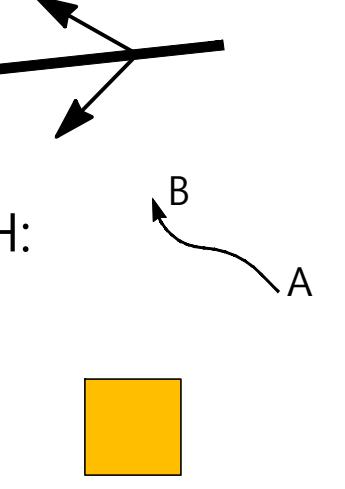

STABILIZE ANY NEWLY DISTURBED AREAS WITH PERMANENT STABILIZATION.

THE CONTRACTOR SHALL BE ALLOWED TO MAKE MINOR ADJUSTMENTS TO THIS SEQUENCE UPON ENGINEER AND/OR ECS INSPECTOR'S APPROVAL.

SEDIMENT & EROSION CONTROL PLAN


Situated at 4870 Winchester Boulevard
Plat Book 81, Plat 190
Jefferson Election District No. 14
Frederick County, Maryland

<p>5216 Chairmans Court, Suite 105 Frederick, MD 21703 Phone: 301-378-9842 Email: terrasolutionsengineering@gmail.com</p>	
<p>Owner/Developer</p>	<p>Contract Purchaser</p>
<p>Stanford Trading VI, LLC 12 West Church Street, Suite 120 Frederick, Maryland 21701</p>	<p>Ruppert Properties 12 West Church Street, Suite 2 Frederick, Maryland 21702 Phone: 301-655-0550, Contact Matt Poffenbarger</p>
<p>Seal & Signature</p> <p><i>Gerald L. Miller</i></p>	



PROFESSIONAL ENGINEER'S CERTIFICATION	
ED BY:	<i>Gerald Miller</i>
GERALD LEE MILLER, JR., P.E. DATE 5-26-22	
CENSE No.: 21401, P.E. EXPIRATION DATE: 11-09-22	
E BY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR VED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ER UNDER THE LAWS OF THE STATE OF MARYLAND.	

DRAINAGE AREA DIVIDE:

TIME-OF-CONCENTRATION FLOW PATH:

FILTER BED AREA:

Terra Solutions Engineering, LLC	
Commercial & Residential Land Planning and Engineering	
5216 Chairmans Court, Suite 105	
Frederick, MD 21703	
Phone: 301-378-9842 Email: terrasolutionsengineering@gmail.com	
<u>Owner/Developer</u>	
<u>Contract Purchaser</u>	
Stanford Trading VI, LLC	
12 West Church Street, Suite 120	
Frederick, Maryland 21701	
Phone: 301-695-0550, Contact Matt Poffenbarger	
Seal & Signature	
PROJECT No.: 274	
DATE: MAY 2022	
SCALE: 1" = 20'	
SHEET 274 of 28	

ck, MD 21703
301-378-9842 Email: terrassolutionsengineering@gmail.com

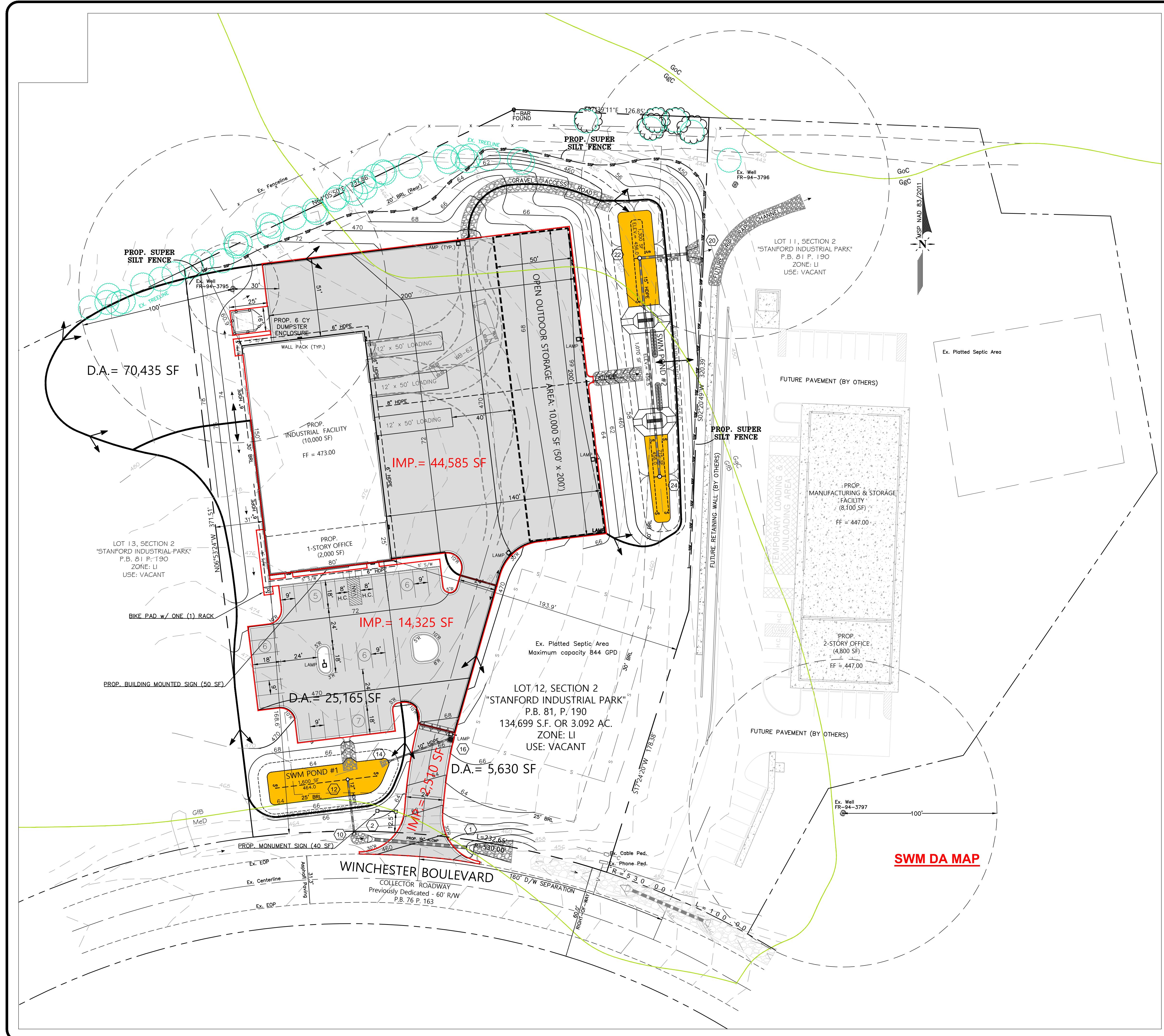
REGISTERED
PROFESSIONAL ENGINEER
Donald F. Miller
Seal & Signature

Serial & Signature

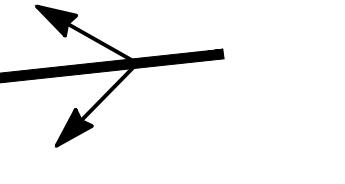
ST NO.: 274

MAY 2022

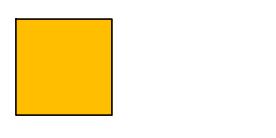
1" = 20'

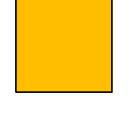

No. 8 of 8

NO. 8818



PROFESSIONAL ENGINEER'S CERTIFICATION	
ED BY:	<u>Gerald Lee Miller, Jr., P.E.</u>
DATE 5-26-22	
LICENSE No.: 21401, P.E. EXPIRATION DATE: 11-09-22	
I hereby certify that these documents were prepared or signed by me, and that I am a duly licensed professional engineer under the laws of the state of Maryland.	




DRAINAGE AREA DIVIDE:

TIME-OF-CONCENTRATION FLOW PATH:

FILTER BED AREA:

STANFORD INDUSTRIAL PARK - LOT 12

Situated at 4870 Winchester Boulevard
Plat Book 81, Plat 190
Jefferson Election District No. 14
Frederick County, Maryland

DRAINAGE AREA MAP

Terra Solutions Engineering, LLC
Commercial & Residential Land Planning and Engineering
5216 Chairmans Court, Suite 105
Frederick, MD 21703
Phone: 301-378-9842 Email: terrasolutionsengineering@gmail.com

Owner/Developer **Contract Purchaser**

Stanford Trading VII, LLC
12 West Church Street, Suite 200
Frederick, Maryland 21702
Phone: 301-695-0550, Contact Matt Portenier

Seal & Signature

PROJECT NO.:	274
DATE:	MARCH 2022
SCALE:	1" = 20'
SHEET No.	9 of 9

PROFESSIONAL ENGINEER'S CERTIFICATION		
SIGNED BY:		
GERALD LEE MILLER, JR., PE DATE		
MD LICENSE No: 21401, P.E. EXPIRATION DATE: 11-09-22		
I HEREBY CERTIFY THAT THESE DOCUMENTS WERE PREPARED OR APPROVED BY ME, AND THAT I AM A DULY LICENSED PROFESSIONAL ENGINEER UNDER THE LAWS OF THE STATE OF MARYLAND.		

Combined SWM Concept & Development Plan Computations

REPORT TITLE CORRESPONDING TO TYPE OF PLANS SUBMITTED

for

Stanford Industrial Park – Lot 12

(Plat Book 81, Plat 190)

**Situated at 4870 Winchester Boulevard
Frederick County, Maryland**

Prepared for:

Ruppert Properties

12 West Church Street, Suite 2
Frederick, Maryland 21702

Phone: 301-695-0550

Engineering by:

Terra Solutions Engineering, LLC

5216 Chairmans Court, Suite 105
Frederick, Maryland 21703

Phone: 301-378-9842
Contact: Gerald Lee Miller, P.E.

May 18, 2022

Concept Design / SWM Narrative

1. Stormwater Management (SWM) Concept – Narrative:

Terra Solutions Engineering, LLC (TSE) is pleased to be working for Ruppert Properties (Ruppert) on the design of their new industrial-office building, which will be located on Lot 12 in Stanford Industrial Park. The existing site is currently vacant, and the proposed improvements will include building a new parking lot to accommodate 30 vehicles and three (3) large loading spaces for the proposed industrial operation. The existing site consists of both type “B” & “C” soils, but the proposed development occurs within an area that is approximately 99.9% type “B” soil. Two (2) stormwater management (SWM) facilities will be required and constructed on-site, with one near the entrance of the property, and the other below the large truck parking and material storage area. The drainage area and impervious area to the front SWM facility (SWM #1) is approximately 25,165 square feet (SF) and 14,325 SF, respectively; therefore, the percent imperviousness is approximately 56.9%. SWM facility #2 captures approximately 70,435 SF of runoff and intercepts approximately 44,585 SF of impervious area; therefore, the percent imperviousness for SWM #2 is approximately 63.3%. Since the drainage area to SWM facility #1 is just above 20,000 SF (i.e., 25,165 SF), it was designed as a micro-bioretention facility. Drainage area #2 was considerably larger and couldn't be reduced or broken into smaller subareas easily due to the site configuration; therefore, SWM facility #2 was designed as a Chapter 3 Bioretention facility with a central forebay design. The forebay assists by slowing the storm runoff as it enters the SWM facility and with the removal of a portion of the sediment before it enters the water quality or 2nd cells within the pond; thereby, extending the life of the two (2) water quality cells....one at each end of SWM Pond #2. The proposed micro-bioretention (SWM #1) and bioretention pond (SWM #2) will provide full WQv control for the runoff from the proposed development, and no additional WQv or ESD treatment is required to meet the 2000 Maryland SWM Design Manual guidelines. There are existing Regional SWM Ponds located within Stanford Industrial Park that provide additional SWM control for both the 10-year & 100-year storms. We have excluded any credit for the existing Regional Ponds from this design; thereby, assuring additional SWM control is provided within our project and for the Industrial Park as a whole. The site is bordered to the north by farm land (Ag), and to the east, west, and south by Limited Industrial (LI) zoned property. The subject property is located within Stanford Industrial Park and will be developed in accordance with the allowable LI zoning guidelines, as permitted, and as was approved on Site Plan (SP266549).

2. Site & Resource Mapping:

Natural Resources & Corresponding Regulatory Authority for this Project:

Federal	State	Local (County)
<ul style="list-style-type: none">• Wetlands• Major Waterways• Floodplains	<ul style="list-style-type: none">• Tidal & non-tidal wetlands• Wetlands (State concern)• Wetland buffers• Stream buffers• Perennial streams• Floodplains• Forest Impacts & Mitigation• Forest buffers• Critical Areas	<ul style="list-style-type: none">• Steep Slopes• Highly erodible soils• Enhanced stream buffers• Topography / Slopes• Springs• Seeps• Intermittent streams• Vegetative cover• Soils• Bedrock / geology• Existing drainage areas

Natural Resource Discussion:

There are no forested areas on-site, although a Forest Resource Ordinance (FRO) Plan was prepared and submitted per the standard Site Plan requirements. There is a band of existing trees along the northern property, which we've tried to avoid, but approximately four (4) trees could not be avoided and will be removed as part of providing access to SWM Pond #2. No stream or wetland impacts are proposed by the development of this property. No other State or Federal natural resources will be impacted by the proposed site improvements; therefore, only local agency permitting is anticipated necessary for the project at this time. Since the proposed site improvements will disturb more than one acre, a NPDES General Permit for Stormwater Associated with a Construction Activity will be required and will be obtained from the Maryland Department of the Environment (MDE) as part of the standard construction permitting for this project.

As illustrated on the plan, the site topography is moderate with existing slopes ranging from 4% to 20% across the site. The existing on-site soils consist of Glenelg silt loam (GfB, 3% to 8%) & Glenelg gravelly loam (GgC, 8% to 15%) slopes (HSG: 'B'), and Mt. Airy channery loam (15% to 25% slopes, MeB, HSG: 'C'). The soil types are hydrologic soil group 'B' & 'C' soils. The in-situ soils have moderate erodibility factors ranging from 0.15 (MeD), 0.17 (GgC) and 0.37 (GfB). The moderate slopes across the site and final stabilization will help to mitigate any erodibility concerns. Within the proposed construction area, the slopes have been kept gentle, except for the maximum constructed slopes, which will be kept at 3:1 or less. There are no long slopes (>50-feet) of grading proposed within the limits of this project, and off-site water is naturally diverted around the site, which helps reduce its impact on the proposed site grading.

3. Site Fingerprinting & Development Layout:

The site does not have any major natural resources and the existing vegetative cover will remain or be replaced as a maintained grass yard in most areas. The natural drainage patterns will not direct runoff into the proposed development areas of this site. This project will not be required to provide excessive additional on-site SWM control for any off-site rainfall.

4. Locating ESD Practices:

The proposed micro-bioretention (M-6) SWM Pond #1 and bioretention (F-6) SWM Pond #2 have been designed immediately down-hill from the proposed commercial building and parking areas for this development. The proposed WQv facilities, by the nature of their size, configuration, and the use of curb-&-gutter to convey the site runoff from the property into the SWM facilities, will help reduce the chance of failure and/or the bypassing of any contaminated runoff.

5. Summary of Site Development Strategies – Better Site Design Techniques:

A. Using narrower short streets, right-of-ways, and sidewalks:

There are no extensions or impacts to local streets or right-of-way proposed by this project. Only on-site asphalt parking and concrete sidewalks are required and/or used within this project. We have worked to minimize the use of any additional impervious materials (i.e., trash dumpster, gravel access driveway) wherever possible throughout the site.

B. Cul-de-sacs:

A cul-de-sac is not necessary on this site.

C. Open vegetated channels:

Unfortunately, open vegetated channels were not possible for this site due to its layout and the use of curb-&-gutter to convey runoff. Multiple rip-rap channels were positioned to carry a major portion of the off-site runoff into the two SWM ponds. Conveyance of concentrated runoff has been minimized and controlled into both SWM ponds.

D. Parking ratios, parking codes, parking lots, and structured parking:

Parking is proposed at the minimum parking requirement of 30 spaces, and no additional off-site parking is required for this project. The large truck parking lot was necessary for the intended use of this property as an Industrial Facility and is being constructed in accordance with the approved Site Plan.

E. Parking lot runoff:

The micro-bioretention and bioretention facilities have been located below the parking area. Sheet flow across the parking lot will be directed into the two (2) new facilities and the possibility of bypass has almost been eliminated by the use of curb-&-gutter directing runoff into each facility.

F. Open space:

All impervious area has been clustered in the design, and the limited project size (3.09 acres) also limits the possibility of creating major open space areas, but it should be noted that approximately 53.8% (i.e., 1.66 acres) of the site remains green space, and effectively open space.

G. Setbacks and frontages:

The setbacks and frontage used for this project match those allowed within the Frederick County zoning ordinance for the Limited Industrial (LI) district.

H. Driveways:

The proposed parking lot and internal drive aisles were reduced in both length and width where applicable.

I. Rooftop runoff:

Rooftop runoff and drainage from the proposed commercial building will be collected in the downspouts and piped to the proposed bioretention facility - SWM #2, as illustrated on the final SWM Improvement Plans.

J. Buffer systems:

Forest Banking and/or the payment of fee-in-lieu will be investigated and utilized to meet the balance of the Forest Conservation Ordinance requirements, as necessary for the project.

K. Clearing & grading:

Clearing, grading, and earth disturbance is limited to that required to buildout the proposed development.

L. Tree conservation:

As discussed in Item J, above; off-site forest banking credits will be purchased and utilized.

M. Conservation incentives:

The site takes advantage of the natural drainage patterns to divert runoff around the site, and then captures and treats the maximum on-site development runoff possible.

6. Detailed Step-by-step SWM Design discussion:

Utilizing the Maryland 2000 SWM Design Manual (MSDM) methodology, TSE determined the required Environmental Site Design (ESD) Volume (ESDv) to be 9,407 cubic feet (CF). This volume meets the required ESDv for the approximate 3.09 acre site. Since the existing site drained in multiple directions, it was necessary to design two (2) SWM facilities to capture and fully control the proposed site development as mentioned in Section One - SWM Concept Narrative, above. Approximately 25,060 square feet (SF) drained towards the front of the property and are captured and treated within a single micro-bioretention (M-6) facility. This facility was sized to treat the approximate 14,325 SF of impervious area that drains to it. Due to the limited size of the drainage area (just above 20,000 SF) it was possible to use a single ESD facility (i.e., Micro-bioretention) with a single 24" Advanced Design Systems (ADS) riser near the center of Pond #1.

Based on MSDM methodology, TSE determined that SWM Pond #2 wouldn't work as an ESD facility due to the large drainage area, primarily caused by the 12,000 SF building and approximate 30,000 SF+ of asphalt that drain directly towards Pond #2. Due to site constraints (i.e., major slopes), it wasn't possible to break up the drainage areas into multiple smaller facilities. SWM Pond #2 has a total drainage area of approximately 70,435 SF, of which approximately 44,585 SF is impervious area. Closed curb & gutter provides the major site control that directs runoff around the site and into both SWM Pond #1 & #2. SWM Pond #1 utilizes a 3-foot wide curb-cut to direct runoff into a rip-rap channel that then flows down into the pond. SWM Pond #2 utilizes a 10-foot wide open-back inlet to direct runoff into another rip-rap channel and down into the central forebay of the pond. Water entering the forebay of SWM Pond #2 then flows in opposite directions into the two (2) SWM infiltration chambers (cells) at each end of the facility, where it is then treated by infiltration during smaller storms. Larger storms will overflow the two (2) 30" ADS risers and safely drain through the underground storm drain system to an outfall point adjacent to Lot 11.

Utilizing TR-55, TSE determined that the 10-year Q [2.89 cubic-feet-per-second (CFS)] or runoff will enter SWM Pond #1 at Study Point #1 (i.e., rip-rap channel entering Pond #1). We analyzed the proposed 3-foot wide curb-cut draining into Pond #1 and found that the water would pond a maximum height of 0.44-inches as it flowed through the curb-cut into the rip-rap channel and down into the pond. See the enclosed supporting computations for Pond #1 supporting its safe-conveyance. As a supporting computation, we also analyzed the minor sub-drainage area of 5,630 SF that drains to Study Point #2 and flows directly into storm drain structure No. 16. To fully control the runoff draining towards structure No. 16, we've proposed the installation of an asphalt berm across the entrance driveway to direct all the runoff towards the inlet. Structure No. 16 then diverts all the 10-year runoff (0.83 CFS) through a 10" high-density-polyethylene (HDPE) pipe into SWM Pond #1. Reviewing the computations for Pond #1, we've determined that the total 10-year Q (2.89 CFS) through the 24" ADS riser will pond to a maximum storage depth of 0.27-feet in micro-bioretention Pond #1. The anticipated freeboard in Pond #1 will be more than 9-inches and well above the recommended minimum of 6-inch. A 12" HDPE pipe connects the 24" ADS overflow riser and safely conveys the peak 10-year storm (2.89 CFS) from Pond #1 into a rip-rap channel outfall and then through a 24" aluminized corrugated metal pipe (ALCMP), which flows under the site driveway entrance, adjacent to Winchester Boulevard.

It should be noted that the 24" ALCMP safely conveys the 6.35-acres from both the on-site runoff at Structure #10 and the off-site runoff flowing through the grass-channel located adjacent to Winchester Boulevard. The 24" ALCMP was analyzed and safely passes the 10-year Q (28.05 CFS) without overtopping into Winchester Boulevard as designed. The 10-year runoff then travels through the existing rip-rap channel towards Lot 11, where again it flows through a 24" ALCMP culvert under the new site entrance to Lot 11 and continues downstream. Ultimately, the runoff along Winchester Boulevard is conveyed to an existing regional SWM facility, which was designed to capture and control the larger 10 & 100 year storms generated within Stanford Industrial Park. These regional facilities were designed prior to the 2000 MSDM, and thereby do not eliminate the need for on-site water quality control, but do provide additional major storm control for the entire Industrial Park; thereby, providing additional regional SWM control and safe conveyance for Stanford Industrial Park.

Utilizing TR-55, it was determined that the 10-year Q of 8.53 CFS will enter SWM Pond #2 at Study Point #3. The majority of the runoff will drain into the pond from the large parking lot below the new industrial building, with the site runoff entering the rip-rap channel through an open-back inlet (#26). Based on the following computations, the 10-foot wide open-back inlet will pond approximately 0.40-feet (i.e., 5-inches) as runoff drains through the inlet and into the rip-rap channel behind, and prior to the flow entering the forebay cell of SWM Pond #2. Additional runoff from the 12,000 SF rooftop is collected and piped to the rip-rap channel through a 6" & 8" HDPE storm drain system, as shown on the plan. The proposed rip-rap channel easily conveys the combined 8.53 CFS and safely discharges the runoff into the pond forebay below, where the total flow then drains in opposite directions across two (2) 10-foot wide flow-splitters and into the two (2) infiltrations cells at each end of the SWM pond, as briefly discussed above. A 30" ADS riser is located in each of the two infiltration cells. Reviewing the following computations, we've determined that the maximum Q will be divided in half, since there are two riser structures at the same elevation, and that a maximum ponding storage depth of 0.30-feet is anticipated to pass the 10-year Q of 4.27 CFS through each 30" ADS riser. The anticipated freeboard will be almost 9-inches and well above the minimum 6-inch recommendation. Since both SWM ponds have a storage depth to dam height less than 4-feet, and they store well below 40,000 CF of water, they are considered exempt from the Maryland 378 water impoundment code.

Environmental Site Design (ESD)

Computations

STORMWATER MANAGEMENT (SWM) - Concept Design Calculations

Stanford Industrial Park - Lot 12 - (P.B. 81, Plat 190)

Frederick County, MD

Existing Condition:

Site Area, Drainage Area, or LOD: **134,699** SF

3.0923 Acres

RCN for Soil Type(s): A 38

Total Drainage Area (Soil A): **0** SF

B 55

Total Drainage Area (Soil B): **132,659** SF

C 70

Total Drainage Area (Soil C): **2,040** SF

D 77

Total Drainage Area (Soil D): **0** SF

Composite RCN : **55.2**

Total: **134,699** SF

Existing Impervious Area: **0** SF

Ex. Impervious Area: **0** SF

Existing Imperviousness (%): **0%**

N/A **0** SF

N/A **0** SF

N/A **0** SF

Total: **0** SF

When the existing impervious area of a project site exceeds 40% of the Limits of Disturbance (LOD), the project will be considered a redevelopment project according to the Maryland SWM Design Manual (MSDM).

Redevelopment Project: NO!

Follow Environmental Site Design Criteria - MSDM 5.2.2, pg. 5.18

Proposed Condition:

Existing Impervious Area to Remain: **0** SF

Office & Manufacturing Bldg.: **12,000** SF

Total Design Impervious Area: **62,200** SF

Prop. Asphalt: **47,100** SF

Impervious Area Increase: **62,200** SF

Prop. Conc. & Sidewalks: **1,300** SF

Proposed Imperviousness (%): **46.2%**

Prop. Gravel & Rip-Rap: **1,800** SF

Total: **62,200** SF

Target Pe per Soil Type(s) for A **0.0** Inches

0 SF

"Woods in Good Condition" B **1.8** Inches

132,659 SF

from Table 5.3 using Proposed C **1.8** Inches

2,040 SF

Imperviousness (%) above: D **0.0** Inches

0 SF

Average Target Pe: **1.80**

Total: **134,699** SF

Since the existing site is NOT considered a Redevelopment Project, it will be necessary to provide SWM treatment for 100% of the site area or LOD utilizing the ESD practices outlined in Section 5.2.2 of the MSDM.

Not a Redevelopment Project!

Not a Redevelopment Project!

Not a Redevelopment Project!

Required Treatment Areas:

Existing Impervious Area at 50%: **0** SF

Existing Impervious Area to Remain!

New Treatment Area at 100%: **62,200** SF

Impervious Area to be Treated: **62,200** SF

Treatment Imperviousness (%): **46.2%**

Compute ESD Targets New-Development Impervious Areas:

$$ESD_v = \frac{Pe \times Rv \times A}{12}$$

MSDM Page 5.18

Target Pe = **1.80** Inches

ESDR Page 1, using A,B,C, & D soils

Total Site Area or Limit-of-Disturbance = **134,699** SF

Treatment I = **46.2%**

$$Rv = 0.05 + 0.009 (I)$$

MSDM Page 5.18

$$Rv = 0.4656$$

Minimum ESD_v or WQ_v = **9,407** Ft³ On-site Water Quality Control meeting EDS!

Max Pe, per Facility = 2.5 Inches Frederick County (1-year Storm)

Target ESD_v Summary:

Total Site, Drainage Area, or Limit-of-Disturbance to be Treated = 134,699 SF
Target ESD_v or WQ_v to meet Cpv Requirements = 9,407 Ft³

References

MSDM 2000 Maryland Stormwater Design Manual with 2009 Chapter Addendum
GSFP Maryland Stormwater Management Guidelines for State and Federal Projects- July 2010
ESDPC Environmental Site Design Process and Computations- July 2010
ESDR Environmental Site Design Redevelopment Examples- Oct. 2010

Table 5.3 Rainfall Targets/Runoff Curve Number Reductions used for ESD

Hydrologic Soil Group A										
%I	RCN*	P _E = 1"	1.2"	1.4"	1.6"	1.8"	2.0"	2.2"	2.4"	2.6"
0%	40									
5%	43									
10%	46									
15%	48	38								
20%	51	40	38	38						
25%	54	41	40	39						
30%	57	42	41	39	38					
35%	60	44	42	40	39					
40%	61	44	42	40	39					
45%	66	48	46	41	40					
50%	69	51	48	42	41	38				
55%	72	54	50	42	41	39				
60%	74	57	52	44	42	40	38			
65%	77	61	55	47	44	42	40			
70%	80	66	61	55	50	45	40			
75%	84	71	67	62	56	48	40	38		
80%	86	73	70	65	60	52	44	40		
85%	89	77	74	70	65	58	49	42	38	
90%	92	81	78	74	70	65	58	48	42	38
95%	95	85	82	78	75	70	65	57	50	39
100%	98	89	86	83	80	76	72	66	59	40

Hydrologic Soil Group B

%I	RCN*	P _E = 1"	1.2"	1.4"	1.6"	1.8"	2.0"	2.2"	2.4"	2.6"
0%	61									
5%	63									
10%	65									
15%	67	55								
20%	68	60	55	55						
25%	70	64	61	58						
30%	72	65	62	59	55					
35%	74	66	63	60	56					
40%	75	66	63	60	56					
45%	78	68	66	62	58					
50%	80	70	67	64	60					
55%	81	71	68	65	61	55				
60%	83	73	70	67	63	58				
65%	85	75	72	69	65	60	55			
70%	87	77	74	71	67	62	57			
75%	89	79	76	73	69	65	59			
80%	91	81	78	75	71	66	61			
85%	92	82	79	76	72	67	62	55		
90%	94	84	81	78	74	70	65	59	55	
95%	96	87	84	81	77	73	69	63	57	
100%	98	89	86	83	80	76	72	66	59	55

Cp_v Addressed (RCN = Woods in Good Condition)RCN Applied to Cp_v Calculations

Table 5.3 Runoff Curve Number Reductions used for Environmental Site Design (continued)

Hydrologic Soil Group C										
%I	RCN*	P _E = 1"	1.2"	1.4"	1.6"	1.8"	2.0"	2.2"	2.4"	2.6"
0%	74									
5%	75									
10%	76									
15%	78									
20%	79	70								
25%	80	72	70	70						
30%	81	73	72	71						
35%	82	74	73	72	70					
40%	84	77	75	73	71					
45%	85	78	76	74	71					
50%	86	78	76	74	71					
55%	86	78	76	74	71	70				
60%	88	80	78	76	73	71				
65%	90	82	80	77	75	72				
70%	91	82	80	78	75	72				
75%	92	83	81	79	75	72				
80%	93	84	82	79	76	72				
85%	94	85	82	79	76	72				
90%	95	86	83	80	77	73	70			
95%	97	88	85	82	79	75	71			
100%	98	89	86	83	80	76	72	70		

Hydrologic Soil Group D										
%I	RCN*	P _E = 1"	1.2"	1.4"	1.6"	1.8"	2.0"	2.2"	2.4"	2.6"
0%	80									
5%	81									
10%	82									
15%	83									
20%	84	77								
25%	85	78								
30%	85	78	77	77						
35%	86	79	78	78						
40%	87	82	81	79	77					
45%	88	82	81	79	78					
50%	89	83	82	80	78					
55%	90	84	82	80	78					
60%	91	85	83	81	78					
65%	92	85	83	81	78					
70%	93	86	84	81	78					
75%	94	86	84	81	78					
80%	94	86	84	82	79					
85%	95	86	84	82	79					
90%	96	87	84	82	79	77				
95%	97	88	85	82	80	78				
100%	98	89	86	83	80	78	77			

Cp_v Addressed (RCN = Woods in Good Condition)

RCN Applied to Cp_v Calculations

Micro-Bioretention (M-6) "ESD" Design Worksheet

SWM Pond # 1

Balance of ESDv to meet Cpv Treatment before Micro-Bioretention: 9,407 cf
 Minimum Micro-Bioretention Volume Required (100% of ESDv or WQv): 9,407 cf
 See Section 3.4.4

Balance of ESDv to meet Cpv Treatment after Micro-bioretention: 2,916 cf

Balance of ESDv to meet Cpv Treatment after Micro-bioretention: 6,491 cf
Need more ESD volume!

Facility/DA Area ID	Drainage Area (sq. ft)	Impervious Area (sq. ft)	Pervious (%)	Impervious (l) (%)	R _v (.05+.009 l)	Filter Bed Area (Af) (sq. ft)	Af / DA (x > 2%)
Micro-Bio SWM #1	25,060	14,325	42.84%	57.16%	0.56	1620	6.46%
Max ESD Volume ESDv=Pe*Rv*A/12 Pe= 1-yr storm (cubic ft.)	Provided Ponding Depth (ft.)	ESD Volume Below Grade (Porosity=0.4) (cubic ft.)	ESD Volume Above Grade (End Area Method) (cubic ft.)	Total ESD Volume	Provided ESDv Volume	Provided Pe Treatment (cubic ft.)	Provided Pe (inches)
2947	2.00	1.00	1296	1620	2916	2916	2.5

Facility/DA Area ID	Drainage Area (sq. ft)	Impervious Area (sq. ft)	Pervious (%)	Impervious (l) (%)	R _v (.05+.009 l)	Filter Bed Area (Af) (sq. ft)	Af / DA (x > 2%)
N/A	1	0	100.00%	0.00%	0.05	0	0.00%
Max ESD Volume ESDv=Pe*Rv*A/12 Pe= 1-yr storm (cubic ft.)	Provided Ponding Depth (ft.)	ESD Volume Below Grade (Porosity=0.4) (cubic ft.)	ESD Volume Above Grade (End Area Method) (cubic ft.)	Total ESD Volume	Provided ESDv Volume	Provided Pe Treatment (cubic ft.)	Provided Pe (inches)
0	4.00	1.00	0	0	0	0	0.0

Bioretention - SWM Pond (F-6) "ESD" Design Worksheet

SWM Pond #2

Balance of ESDv to meet Cpv Treatment before Bioretention Pond: 6,491 cf
 Minimum ESD Volume Required prior to Treatment (75% of ESDv or WQv): 4,868 cf
 See Section 3.4.4
 Total Bioretention ESDv Treatment Volume: 6,496 cf

Balance of ESDv to meet Cpv Treatment after Bioretention Pond 0 cf
 Required ESDv fully satisfied!!

Facility/DA Area ID	Drainage Area (sq. ft)	Impervious Area (sq. ft)	Pervious (%)	Impervious (%)	Rv (.05+.009 l)	Filter Bed Area (Af) (sq. ft)	Req. Filter Bed (Af) (Af Min.)
SWM Pond #2	70,435	44,585	36.70%	63.30%	0.62	2020	1082
Max ESD Volume ESDv=Pe*Rv*A/12 Pe= 1-yr storm (cubic ft.)	Provided Ponding Depth (ft.)	ESD Volume Below Grade (Porosity=0.4) (cubic ft.)	ESD Volume Above Grade (End Area Method) (cubic ft.)	Total ESD Volume Provided (cubic ft.)	Provided ESDv Treatment (cubic ft.)	Provided Pe (inches)	
9093	4.00	1.00	3232	2020	5252	5252	1.4

Filter Design Method Selected:	Type	Sand: 3.5 _Ft / Day	Forebay Ponding Area (SF)	Forebay Depth (Ft.)	Forebay Ponding Volume (CF)
Permeability (K) = Filter Bed Drain Time =	<input type="checkbox"/> Bio-Soil <input type="checkbox"/> 0.5 <input type="checkbox"/> 2.0 Bed Drain Time: 1.67 Days (sand) or 2.0 Days (bio-soil)	Peat: 2.0 _Ft / Day Leaf Compost: 8.7 _Ft / Day Bioretention Soil: 0.5 _Ft / Day	995	1.25	1244

MSDM
 GSFP
 ESDPC
 ESDR

2000 Maryland Stormwater Design Manual with 2009 Chapter Addendum
 Maryland Stormwater Management Guidelines for State and Federal Projects
 Environmental Site Design Process and Computations
 Environmental Site Design Redevelopment Examples

July 2010
 July 2010
 Oct 2010

SWM Computations for Pond #1

TR-55 Peak Discharge, Micro-Bioretention & Orifice Design

Worksheet 2: Runoff Curve Number and Runoff

Project: Stanford Industrial Park - Lot 12

By: GLM

Date: 04/30/22

Location: SWM Pond #1

Checked:

Date: 04/30/22

Circle One: Present Developed

1. Runoff curve number (CN):

Soil name and hydrologic group (appendix A)	Cover Description (cover type, treatment, and hydrologic condition; percent impervious; unconnected / connected impervious area ratio)	CN 1/			Area acres miles ² %	Product of CN x Area
		Table 2-2	Fig. 2-3	Fig. 2-4		
Mt. Airy MeD	Mt. Airy channery loam, 15% to 25% slp.: HSG: C Industrial Property	91			0.02	2.00
Glenelg GfB, GgB, & GgC	silt & channery loam, 3 to 15% slopes; HSG: B Industrial Property	88			0.56	48.84
					0.00	0.00
					0.00	0.00
					0.00	0.00
					0.00	0.00
					0.00	0.00
					0.00	0.00
					0.00	0.00
					0.00	0.00
					0.00	0.00
					0.00	0.00
					0.58	50.84
		Totals =				

$$CN \text{ (weighted)} = \frac{\text{Total Product}}{\text{Total Area}}$$

50.84
0.58

$$\text{Use CN} = 88.11$$

2. Runoff (Q):

Frequency Yr.
Rainfall, P (24-hour) in
Runoff, Q in

Storm #1 Storm #2 Storm #3

2	10	100
3.10	5.00	7.00
1.90	3.66	5.58

(Use P & CN with table 2-1, fig. 2-1, or
eqs. 2-3 and 2-4.)

Worksheet 4: Graphical Peak Discharge Method

Project:

By:

Date:

Location:

Checked:

Date:

Circle One: Present Developed

1 Data:

Drainage area, A_m

$A_m =$	0.58	acres (Ac.)
$A_m =$	0.000902	mile ²
	88	(From worksheet #2)
	0.16	hr. (From worksheet #3)
	II	(I, IA, II, or III)

Runoff curve number (RCN)

Time of concentration (Tc)

Rainfall distribution type

Pond & swamp areas spread
throughout the watershed

swamp = % of A_m Ac.

Storm #1	Storm #2	Storm #3
----------	----------	----------

2 Storm Frequency

Yr. 2	10	100
-------	----	-----

3 Rainfall, P (24-hour)

in 3.10	5.00	7.00
---------	------	------

4 Initial abstractions, Ia

(use CN with Table 4-1)

in 0.247	0.247	0.247
----------	-------	-------

5 Computed Ia/P

0.080	0.049	0.035
-------	-------	-------

6 Unit peak discharge, qu

(use Tc & Ia/P with exhibit 4-II)

csm/in 875	875	875
------------	-----	-----

7 Runoff, Q

(From worksheet #2)

in 1.90	3.66	5.58
---------	------	------

8 Pond and swamp adjustment factor, F_p

(use percent pond and swamp area with
Table 4-2. Factor is 1.0 for zero (0%) percent
pond and swamp area.)

1.00	1.00	1.00
------	------	------

9 Peak discharge, qp

(where $qp = qu \times A_m \times Q \times F_p$)

cfs 1.50	2.89	4.40
----------	------	------

Culvert Report

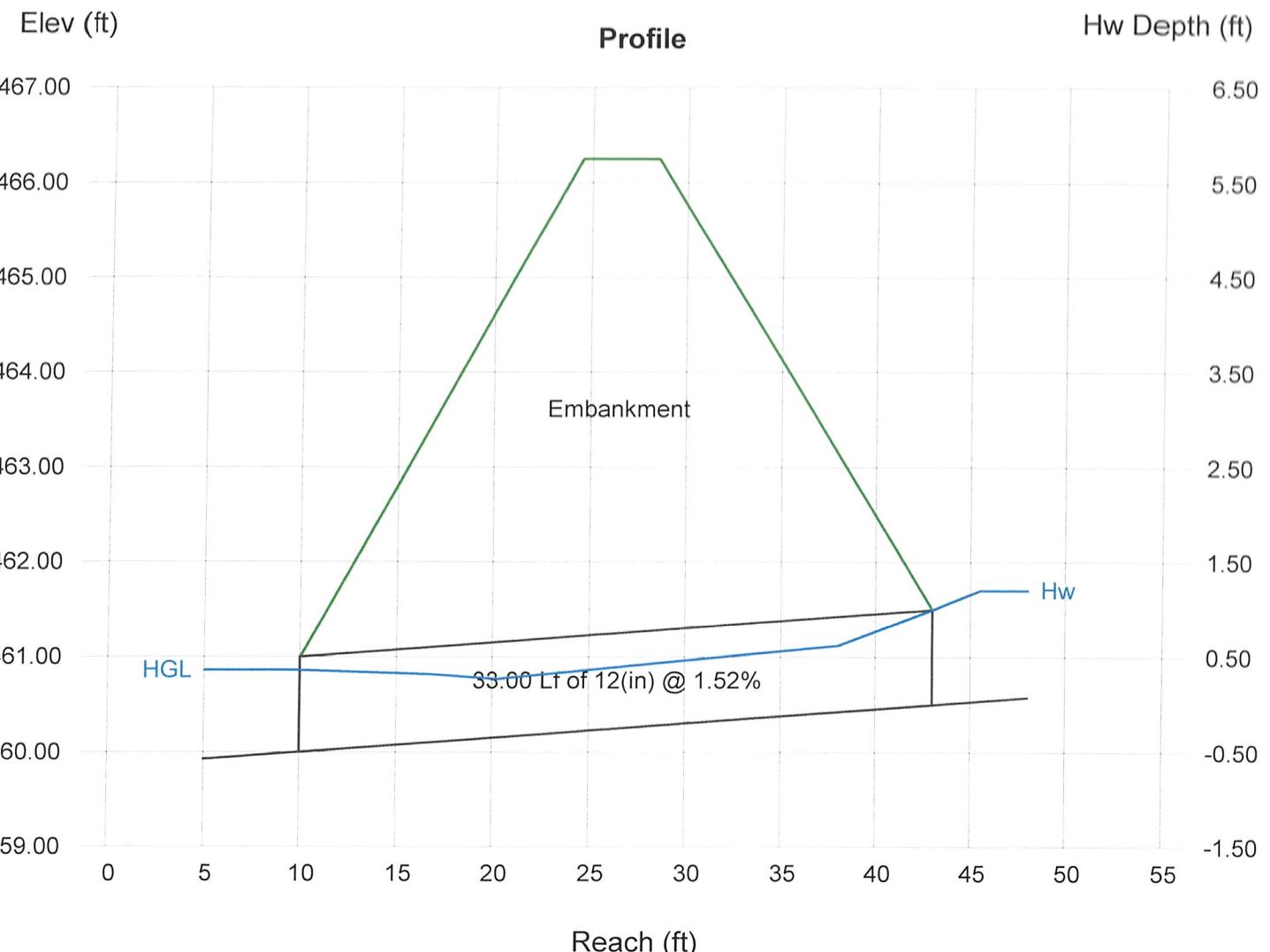
Hydraflow Express by Intelisolve

Saturday, Apr 30 2022, 4:17 PM

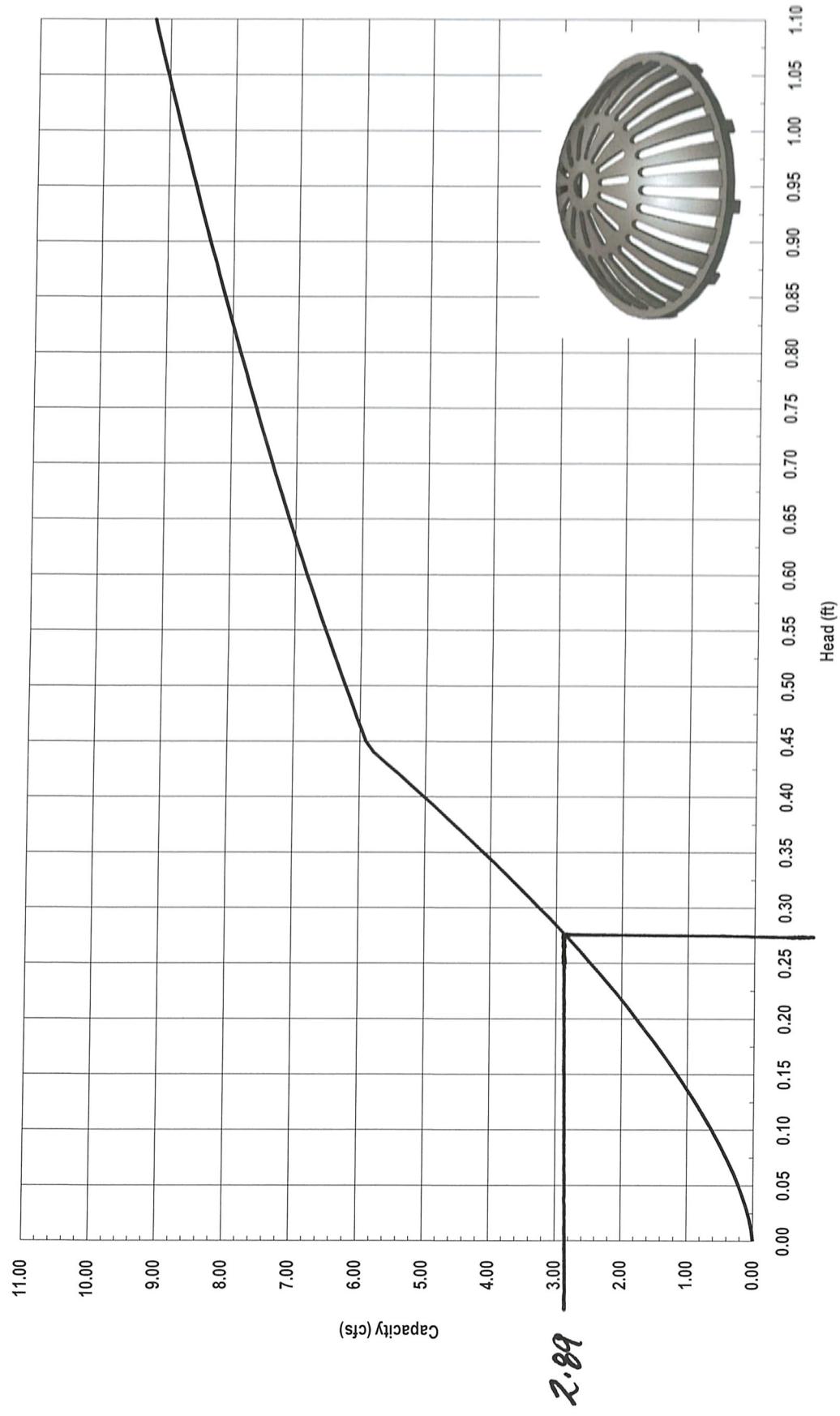
SWM Pond No.1 - Culvert Outfall Analysis

Invert Elev Dn (ft) = 460.00
Pipe Length (ft) = 33.00
Slope (%) = 1.52
Invert Elev Up (ft) = 460.50
Rise (in) = 12.0
Shape = Cir
Span (in) = 12.0
No. Barrels = 1
n-Value = 0.011
Inlet Edge = Sq Edge
Coeff. K,M,c,Y,k = 0.0098, 2, 0.0398, 0.67, 0.5

Embankment


Top Elevation (ft) = 466.25
Top Width (ft) = 4.00
Crest Width (ft) = 100.00

Calculations


Qmin (cfs) = 2.89
Qmax (cfs) = 2.89
Tailwater Elev (ft) = $(dc+D)/2$

Highlighted

Qtotal (cfs) = 2.89
Qpipe (cfs) = 2.89
Qovertop (cfs) = 0.00
Veloc Dn (ft/s) = 4.02
Veloc Up (ft/s) = 4.77
HGL Dn (ft) = 460.86
HGL Up (ft) = 461.22
Hw Elev (ft) = 461.70
Hw/D (ft) = 1.20
Flow Regime = Inlet Control

Nyloplast 24" Dome Grate Inlet Capacity Chart

0.27

2.89

Flow No. 1

10 yr. Q = 2.89 cfs

 Nyloplast[®]

3130 Verona Avenue • Buford, GA 30518
(866) 888-8479 / (770) 932-2443 • Fax: (770) 932-2490
© Nyloplast Inlet Capacity Charts June 2012

Weir Report

Hydraflow Express by Intelisolve

Saturday, Apr 30 2022, 3:41 PM

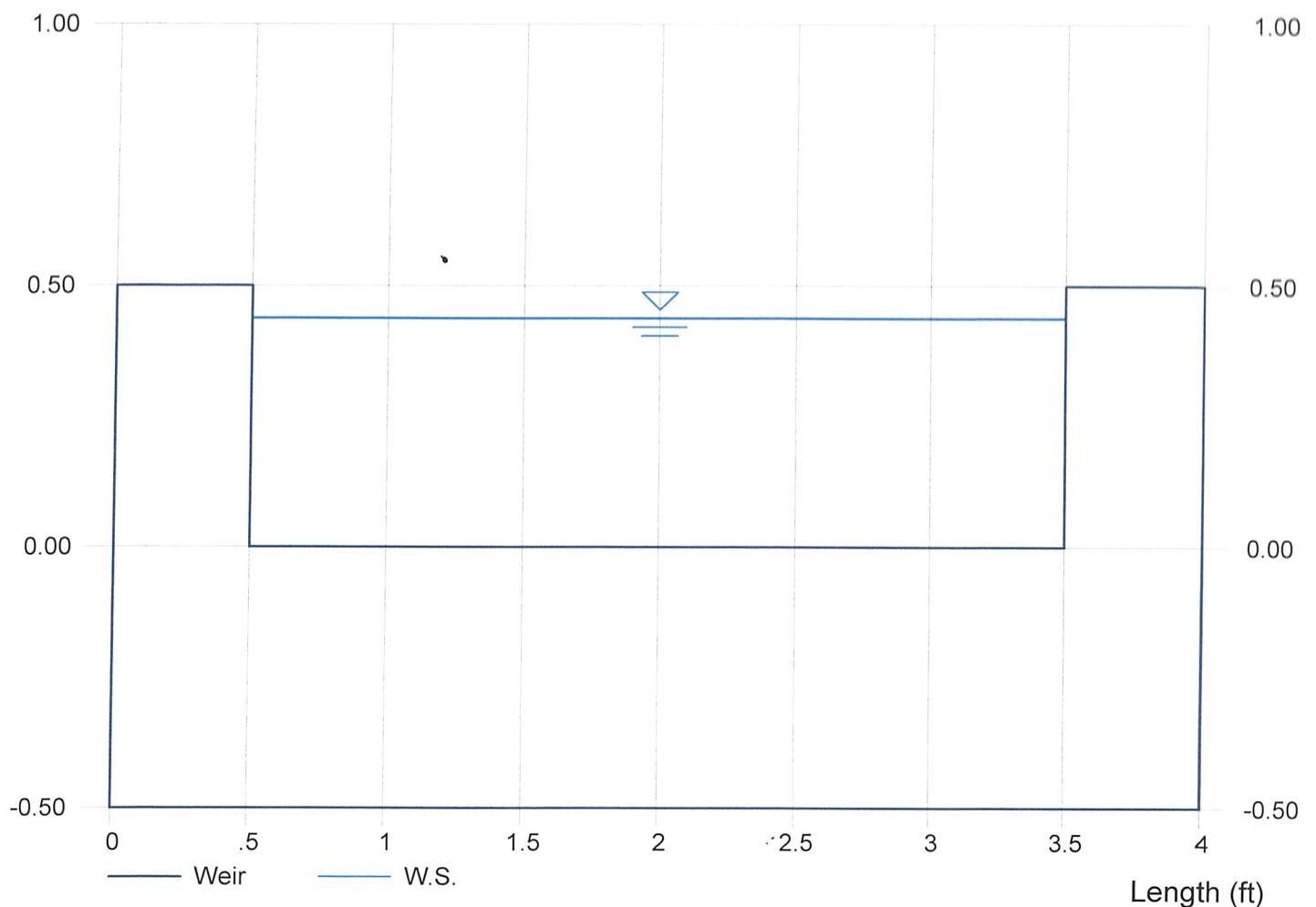
Curb-Cut into Pond #1

Rectangular Weir

Crest = Sharp
Bottom Length (ft) = 3.00
Total Depth (ft) = 0.50

Highlighted

Depth (ft) = 0.44
Q (cfs) = 2.890
Area (sqft) = 1.31
Velocity (ft/s) = 2.20
Top Width (ft) = 3.00


Calculations

Weir Coeff. Cw = 3.33
Compute by: Known Q
Known Q (cfs) = 2.89

Depth (ft)

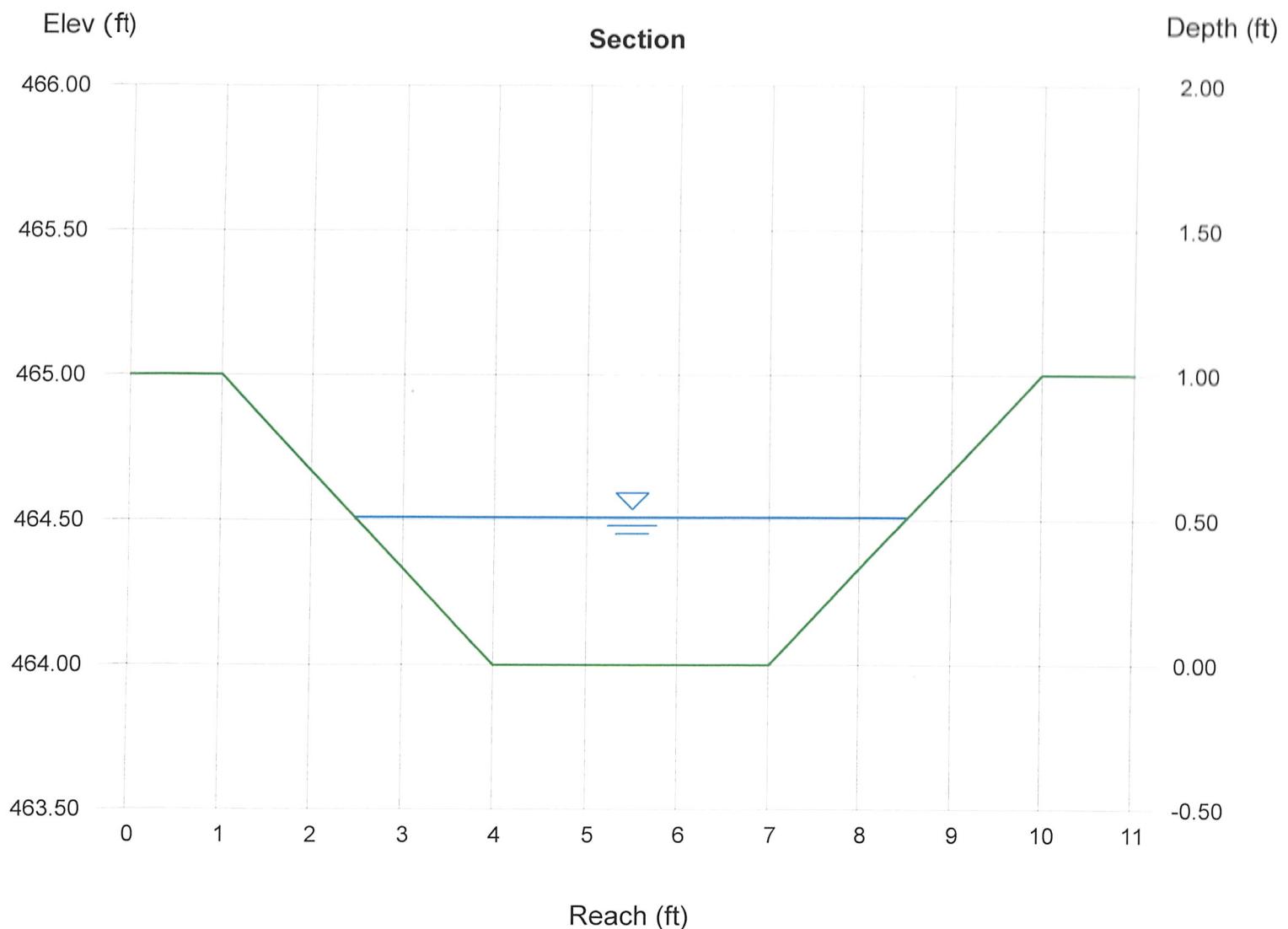
Curb-Cut into Pond #1

Depth (ft)

Channel Report

Rip-Rap Channel into Pond #1

Trapezoidal


Bottom Width (ft)	= 3.00
Side Slope (z:1)	= 3.00
Total Depth (ft)	= 1.00
Invert Elev (ft)	= 464.00
Slope (%)	= 0.33
N-Value	= 0.035

Calculations

Compute by: Known Q
Known Q (cfs) = 2.89

Highlighted

Depth (ft)	= 0.51
Q (cfs)	= 2.890
Area (sqft)	= 2.31
Velocity (ft/s)	= 1.25
Wetted Perim (ft)	= 6.23
Crit Depth, Y_c (ft)	= 0.28
Top Width (ft)	= 6.06
EGL (ft)	= 0.53

Worksheet 2: Runoff Curve Number and Runoff

Project: Stanford Industrial Park - Lot 12

By: GLM

Date: [04/30/22]

Location: Structure 16 - Pond #1

Checked:

Date: _____

Circle One: Present Developed

1. Runoff curve number (CN):

$$CN \text{ (weighted)} = \frac{\text{Total Product}}{\text{Total Area}}$$

11.89
0.13

Totals =

Use CN =

2. Runoff (Q):

Frequency Yr.

Rainfall, P (24-hour) in

Runoff, Q in

(Use P & CN with table 2-1, fig. 2-1, or
eqs. 2-3 and 2-4.)

2	10	100
3.10	5.00	7.00
2.26	4.09	6.06

Worksheet 3: Time of concentration (Tc) or travel time (Tt)

Project: Stanford Industrial Park - Lot 12

By: GLM

Date: 04/30/22

Location: Structure 16 - Pond #1

Checked: 0

Date: -

Circle One: Present Developed

Circle One: Tc Tt through subarea

Notes: Space for as many as two segments per flow type can be used for each worksheet. Include a map, schematic, or description of flow segments.

Sheet flow (Applicable to Tc Only)

- 1 Surface description (table 3-1).....
- 2 Manning's roughness coefficient, n (table 3-1)
- 3 Flow length, L (total L < 300 ft.)
- 4 Two-Yr. 24-Hour rainfall, P₂
- 5 Land slope, S
- 6 $Tt = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} S^{0.4}}$ Compute Tt

Segment ID:	AB	-
ft	Paved	N/A
in	0.02	0.00
ft	40	1
in	3.1	3.1
ft/ft	0.026	0.0001
hr	0.01	+ 0.00 = 0.01

Shallow concentrated flow

- 7 Surface description (paved or unpaved)
- 8 Flow length, L
- 9 Watercourse slope, S
- 10 Average velocity, V (figure 3-1)
- 11 $Tt = \frac{L}{3600 V}$ Compute Tt

Segment ID:	BC	-
ft	Paved	N/A
ft	100	0
ft/ft	0.026	1
ft/s	3.4	0.0001
hr	0.01	+ 0.00 = 0.01

Channel flow

- 12 Cross section flow area, A
- 13 Wetted perimeter, Pw
- 14 Hydraulic radius, R = A/Pw Compute R
- 15 Channel slope, S
- 16 Manning's roughness coefficient, n
- 17 Velocity = $1.49 r^{2/3} s^{1/2}$ Compute V
- 18 Flow length, L
- 19 $Tt = \frac{L}{3600 V}$ Compute Tt
- 20 Watershed or subarea Tc or Tt (add Tt in steps 6, 11 & 19)

Segment ID:	CD	-
ft ²	1.00	1.00
ft	1.00	1.00
ft	1.00	1.00
ft/ft	0.0100	0.1000
ft/s	0.015	0.100
ft/s	9.93	4.71
ft	1	0
hr	0.00	+ 0.00 = 0.00

NOTE: Use 0.10 minimum Tc

Worksheet 4: Graphical Peak Discharge Method

Project: Stanford Industrial Park - Lot 12

By: GLM

Date: 04/30/22

Location: Structure 16 - Pond #1

Checked:

Date: -

Circle One: Present Developed

1 Data:

Drainage area, A_m

$A_m = 0.13$ acres (Ac.)

$A_m = 0.000202$ mile²

Runoff curve number (RCN)

92 (From worksheet #2)

Time of concentration (Tc)

0.02 hr. (From worksheet #3)

Rainfall distribution type

II (I, IA, II, or III)

Pond & swamp areas spread
throughout the watershed

swamp = 1.0 % of A_m 0.00 Ac.

Storm #1	Storm #2	Storm #3
----------	----------	----------

2 Storm Frequency

Yr. 2	10	100
-------	----	-----

3 Rainfall, P (24-hour)

in 3.10	5.00	7.00
---------	------	------

4 Initial abstractions, Ia

(use CN with Table 4-1)

in 0.151	0.151	0.151
----------	-------	-------

5 Computed Ia/P

0.049	0.030	0.022
-------	-------	-------

6 Unit peak discharge, qu

(use Tc & Ia/P with exhibit 4-II.)

csm/in 1000	1000	1000
-------------	------	------

Based on minimum Tc = 0.10 Min.

7 Runoff, Q

(From worksheet #2)

in 2.26	4.09	6.06
---------	------	------

8 Pond and swamp adjustment factor, F_p

(use percent pond and swamp area with
Table 4-2. Factor is 1.0 for zero (0%) percent
pond and swamp area.)

1.00	1.00	1.00
------	------	------

9 Peak discharge, qp

(where $qp = qu \times A_m \times Q \times F_p$)

cfs 0.46	0.83	1.22
----------	------	------

Culvert Report

Hydraflow Express by InteliSolve

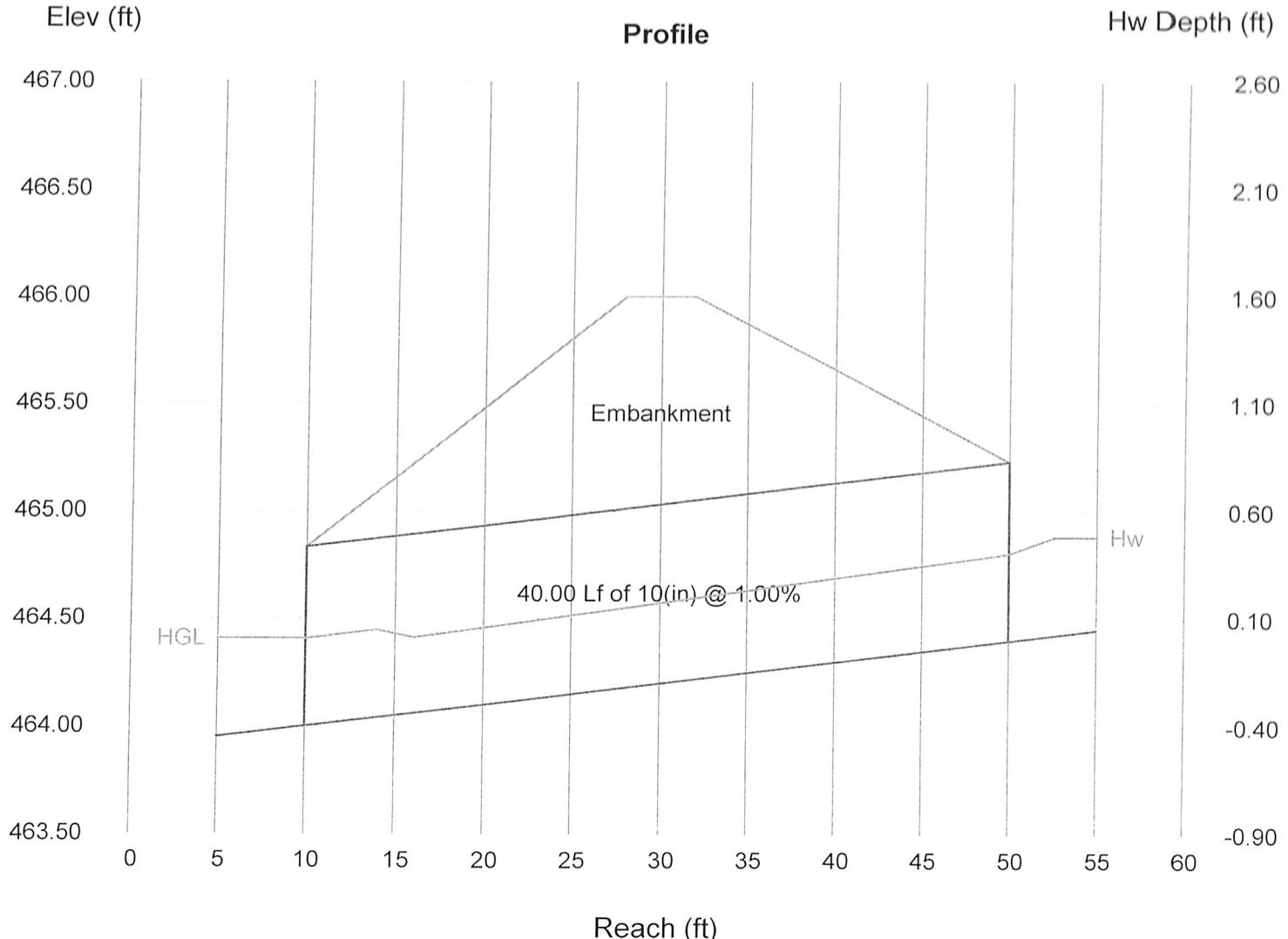
Saturday, Apr 2 2022, 8:55 AM

SWM Pond No. 1 - Structure No.16 Outfall into Pond

Invert Elev Dn (ft) = 464.00
 Pipe Length (ft) = 40.00
 Slope (%) = 1.00
 Invert Elev Up (ft) = 464.40
 Rise (in) = 10.0
 Shape = Cir
 Span (in) = 10.0
 No. Barrels = 1
 n-Value = 0.011
 Inlet Edge = Sq Edge
 Coeff. K,M,c,Y,k = 0.0098, 2, 0.0398, 0.67, 0.5

Embankment

Top Elevation (ft) = 466.00
 Top Width (ft) = 4.00
 Crest Width (ft) = 100.00


Calculations

Qmin (cfs) = 0.83
 Qmax (cfs) = 0.83
 Tailwater Elev (ft) = 464.25

Highlighted

Qtotal (cfs) = 0.83
 Qpipe (cfs) = 0.83
 Qovertop (cfs) = 0.00
 Veloc Dn (ft/s) = 3.15
 Veloc Up (ft/s) = 3.15
 HGL Dn (ft) = 464.41
 HGL Up (ft) = 464.81
 Hw Elev (ft) = 464.88
 Hw/D (ft) = 0.58
 Flow Regime = Outlet Control

Profile

SWM Computations for Pond #2

TR-55 Peak Discharge, Bioretention Design, & Orifice Design

Worksheet 2: Runoff Curve Number and Runoff

Project: Stanford Industrial Park - Lot 12

By: GLM

Date :

Location: SWM Pond #2

Checked:

Date : _____

Circle One: Present Developed

1. Runoff curve number (CN):

$$CN \text{ (weighted)} = \frac{\text{Total Product}}{\text{Total Area}}$$

142.29
1.62

Totals =

Use CN =

2. Runoff (Q):

Frequency Yr.
Rainfall, P (24-hour) in
Runoff, Q in

(Use P & CN with table 2-1, fig. 2-1, or
eqs. 2-3 and 2-4.)

Storm #1 Storm #2 Storm #3

2	10	100
3.10	5.00	7.00
2.26	4.09	6.06

Worksheet 3: Time of concentration (Tc) or travel time (Tt)

Project: Stanford Industrial Park - Lot 12

By: GLM

Date: 04/30/22

Location: SWM Pond #2

Checked: 0

Date: -

Circle One: Present Developed

Circle One: Tc Tt through subarea

Notes: Space for as many as two segments per flow type can be used for each worksheet. Include a map, schematic, or description of flow segments.

Sheet flow (Applicable to Tc Only)

- 1 Surface description (table 3-1).....
- 2 Manning's roughness coefficient, n (table 3-1)
- 3 Flow length, L (total L < 300 ft.)
- 4 Two-Yr. 24-Hour rainfall, P₂
- 5 Land slope, S
- 6 $Tt = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} S^{0.4}}$ Compute Tt

Segment ID:	AB	-
ft	Unpaved	N/A
in	0.24	0.00
ft	100	1
in	3.1	3.1
ft/ft	0.0400	0.0001
hr	0.18	+ 0.00 = 0.18

Shallow concentrated flow

- 7 Surface description (paved or unpaved)
- 8 Flow length, L
- 9 Watercourse slope, S
- 10 Average velocity, V (figure 3-1)
- 11 $Tt = \frac{L}{3600 V}$ Compute Tt

Segment ID:	BC	-
ft	Unpaved	N/A
ft	60	0
ft/ft	0.1000	1.0000
ft/s	5	0.0001
hr	0.00	+ 0.00 = 0.00

Channel flow

- 12 Cross section flow area, A
- 13 Wetted perimeter, P_w
- 14 Hydraulic radius, R = A/P_w Compute R
- 15 Channel slope, S
- 16 Manning's roughness coefficient, n
- 17 Velocity = $1.49 r^{2/3} s^{1/2}$ Compute V
- 18 Flow length, L
- 19 $Tt = \frac{L}{3600 V}$ Compute Tt

Segment ID:	CD	-
ft ²	1.00	1.00
ft	1.00	1.00
ft	1.00	1.00
ft/ft	0.0200	0.1000
ft/s	0.015	0.100
ft/s	14.05	4.71
ft	330	0
hr	0.01	+ 0.00 = 0.01

20 Watershed or subarea Tc or Tt (add Tt in steps 6, 11 & 19)

Total: hr. 0.19

Worksheet 4: Graphical Peak Discharge Method

Project: Stanford Industrial Park - Lot 12

By: GLM

Date: 04/30/22

Location: SWM Pond #2

Checked:

Date:

Circle One: Present Developed

1 Data:

Drainage area, A_m

$A_m = 1.62$ acres (Ac.)

$A_m = 0.002527$ mile²

Runoff curve number (RCN)

88

(From worksheet #2)

Time of concentration (Tc)

0.19

hr. (From worksheet #3)

Rainfall distribution type

II

(I, IA, II, or III)

Pond & swamp areas spread
throughout the watershed

swamp = 1.0 % of A_m 0.00 Ac.

Storm #1	Storm #2	Storm #3
----------	----------	----------

2 Storm Frequency

Yr. 2	10	100
-------	----	-----

3 Rainfall, P (24-hour)

in 3.10	5.00	7.00
---------	------	------

4 Initial abstractions, Ia

(use CN with Table 4-1)

in 0.247	0.247	0.247
----------	-------	-------

5 Computed Ia/P

0.080	0.049	0.035
-------	-------	-------

6 Unit peak discharge, qu

(use Tc & Ia/P with exhibit 4-II)

csm/in 825	825	825
------------	-----	-----

7 Runoff, Q

(From worksheet #2)

in 2.26	4.09	6.06
---------	------	------

8 Pond and swamp adjustment factor, F_p

(use percent pond and swamp area with
Table 4-2. Factor is 1.0 for zero (0%) percent
pond and swamp area.)

1.00	1.00	1.00
------	------	------

9 Peak discharge, qp

(where $qp = qu \times A_m \times Q \times F_p$)

cfs 4.71	8.53	12.63
----------	------	-------

Culvert Report

HydraFlow Express by Intelisolve

Monday, May 16 2022, 2:2 PM

SWM Pond No. 2 - Culvert Outfall Analysis - Structure No. 20

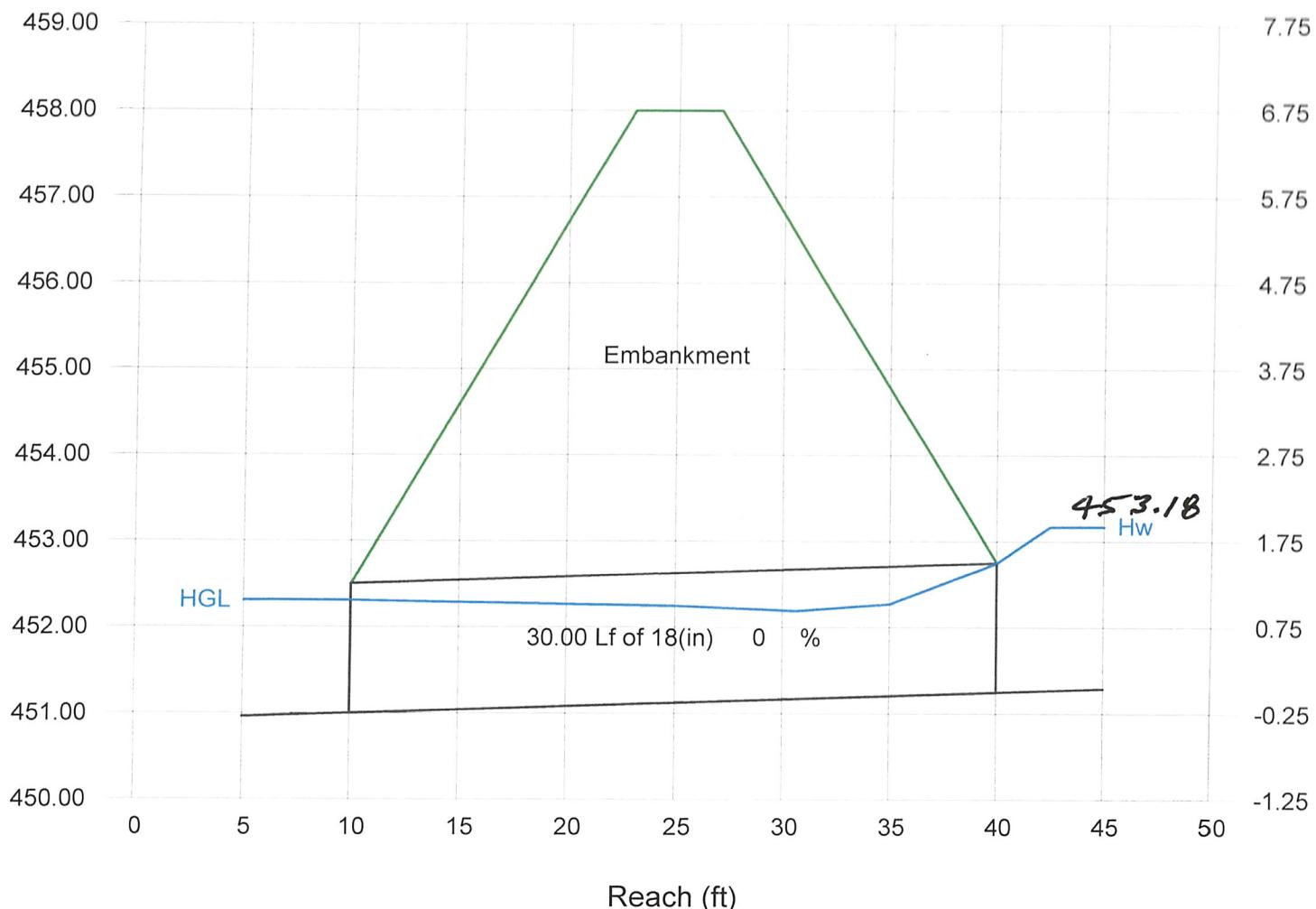
Invert Elev Dn (ft) = 451.00
Pipe Length (ft) = 30.00
Slope (%) = 0.83
Invert Elev Up (ft) = 451.25
Rise (in) = 18.0
Shape = Cir
Span (in) = 18.0
No. Barrels = 1
n-Value = 0.011
Inlet Edge = Sq Edge
Coeff. K,M,c,Y,k = 0.0098, 2, 0.0398, 0.67, 0.5

Embankment

Top Elevation (ft) = 458.00
Top Width (ft) = 4.00
Crest Width (ft) = 100.00

Calculations

Qmin (cfs) = 8.53
Qmax (cfs) = 8.53
Tailwater Elev (ft) = $(dc+D)/2$


Highlighted

Qtotal (cfs) = 8.53
Qpipe (cfs) = 8.53
Qovertop (cfs) = 0.00
Veloc Dn (ft/s) = 5.22
Veloc Up (ft/s) = 6.06
HGL Dn (ft) = 452.31
HGL Up (ft) = 452.36
Hw Elev (ft) = 453.18
Hw/D (ft) = 1.28
Flow Regime = Inlet Control

Elev (ft)

Profile

Hw Depth (ft)

Culvert Report

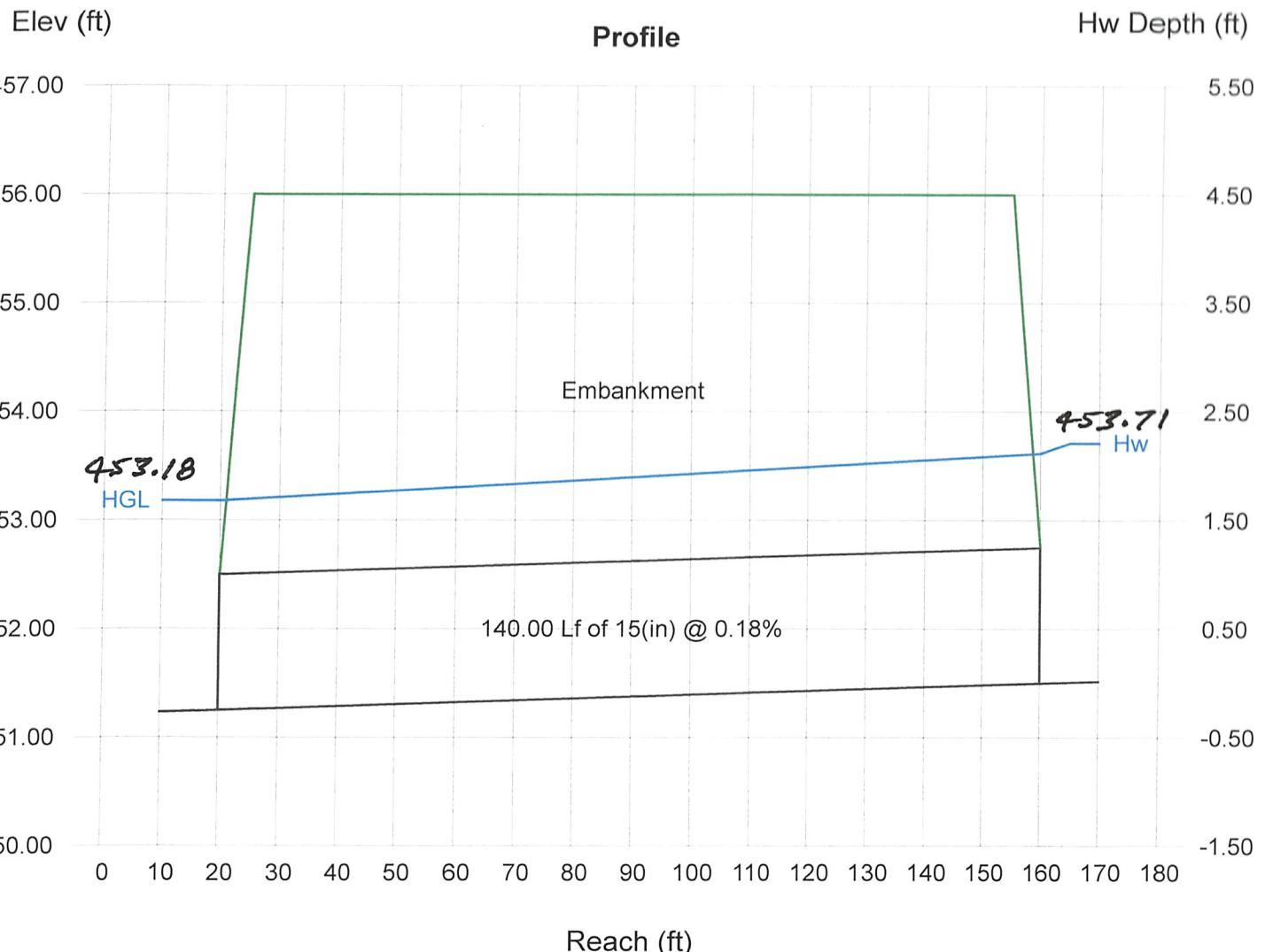
Hydraflow Express by Intelsolve

Monday, May 16 2022, 2:9 PM

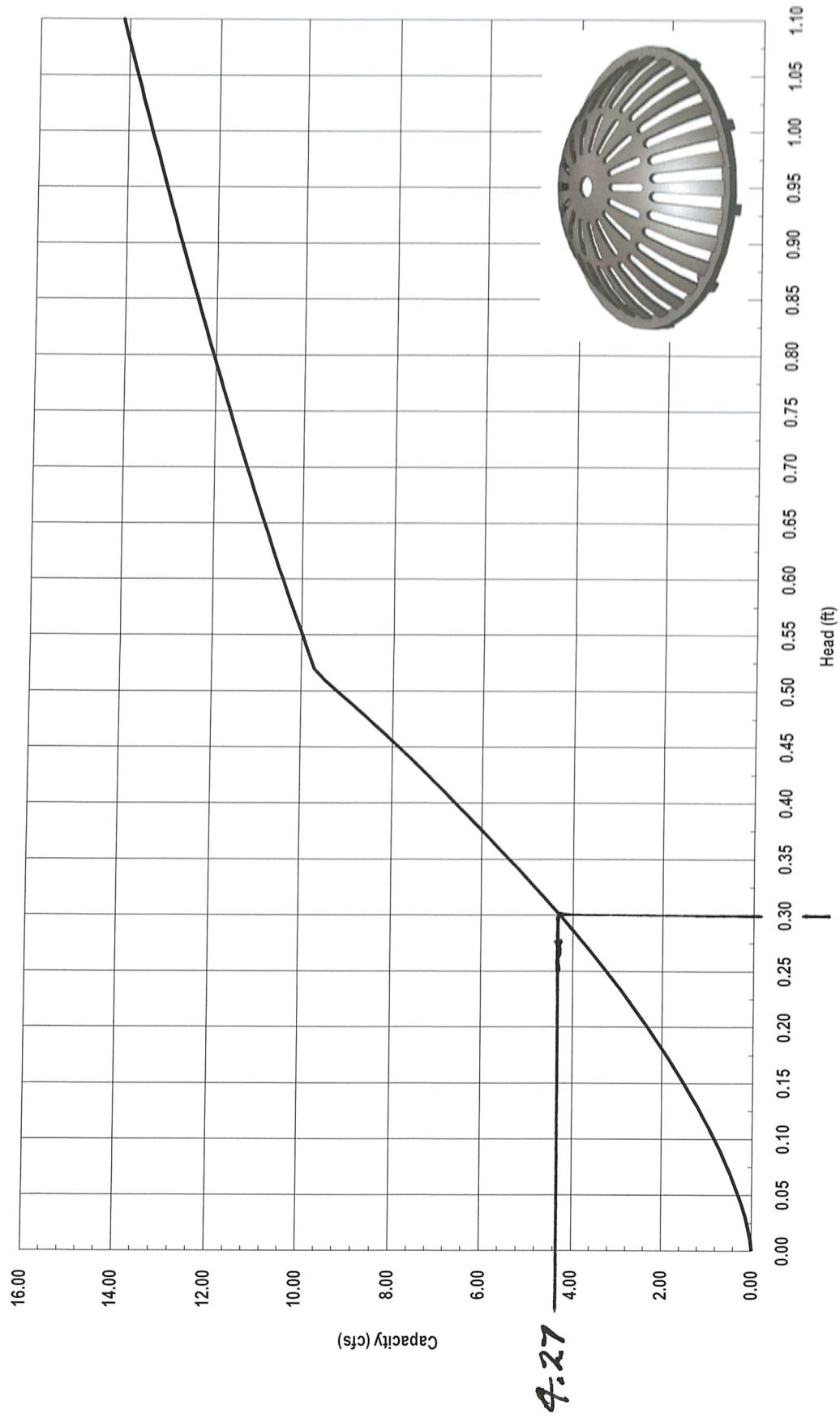
SWM Pond No. 2 - Flow Analysis Structure 24 to 22

Invert Elev Dn (ft) = 451.25
Pipe Length (ft) = 140.00
Slope (%) = 0.18
Invert Elev Up (ft) = 451.50
Rise (in) = 15.0
Shape = Cir
Span (in) = 15.0
No. Barrels = 1
n-Value = 0.011
Inlet Edge = Sq Edge
Coeff. K,M,c,Y,k = 0.0098, 2, 0.0398, 0.67, 0.5

Embankment


Top Elevation (ft) = 456.00
Top Width (ft) = 130.00
Crest Width (ft) = 100.00

Calculations


Qmin (cfs) = 4.27
Qmax (cfs) = 4.27
Tailwater Elev (ft) = 453.18

Highlighted

Qtotal (cfs) = 4.27
Qpipe (cfs) = 4.27
Qovertop (cfs) = 0.00
Veloc Dn (ft/s) = 3.48
Veloc Up (ft/s) = 3.48
HGL Dn (ft) = 453.18
HGL Up (ft) = 453.62
Hw Elev (ft) = 453.71
Hw/D (ft) = 1.77
Flow Regime = Outlet Control

Nyloplast 30" Dome Grate Inlet Capacity Chart

$$8.53/2 = 4.27 \text{ cfs}$$

PowD 10.2

0.30

 Nyloplast[®]

3130 Verona Avenue • Buford, GA 30518
(866) 888-8479 / (770) 932-2443 • Fax: (770) 932-2490
© Nyloplast Inlet Capacity Charts June 2012

2 - GRATES

$$10 \text{ yds}^2 Q = 8.53 \text{ cfs}$$

Weir Report

Hydraflow Express by Intelisolve

Saturday, Apr 30 2022, 3:1 PM

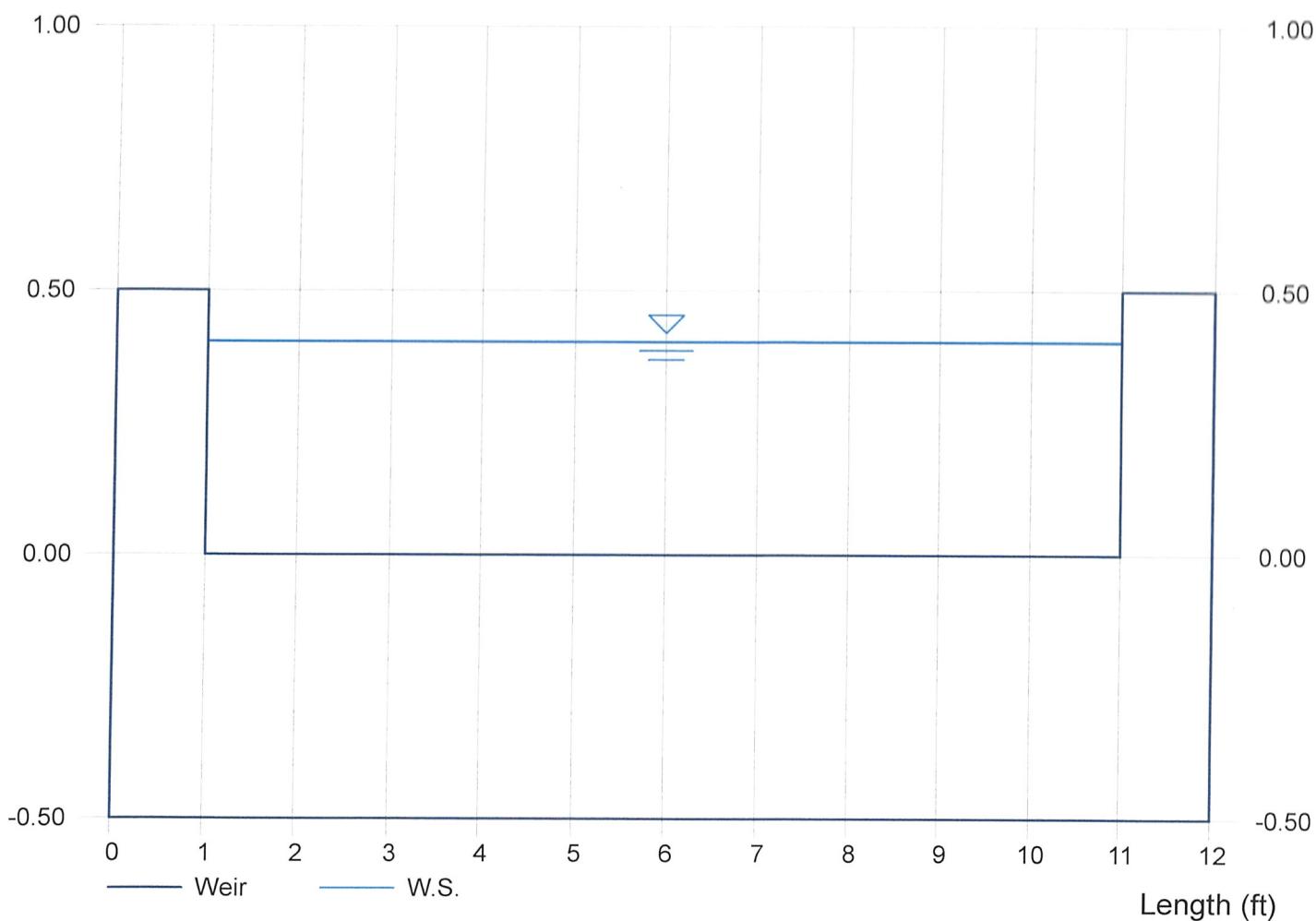
Open-Back Inlet into SWM Pond #2

Rectangular Weir

Crest = Sharp
Bottom Length (ft) = 10.00
Total Depth (ft) = 0.50

Highlighted

Depth (ft) = 0.40
Q (cfs) = 8.530
Area (sqft) = 4.03
Velocity (ft/s) = 2.12
Top Width (ft) = 10.00


Calculations

Weir Coeff. Cw = 3.33
Compute by: Known Q
Known Q (cfs) = 8.53

Depth (ft)

Open-Back Inlet into SWM Pond #2

Depth (ft)

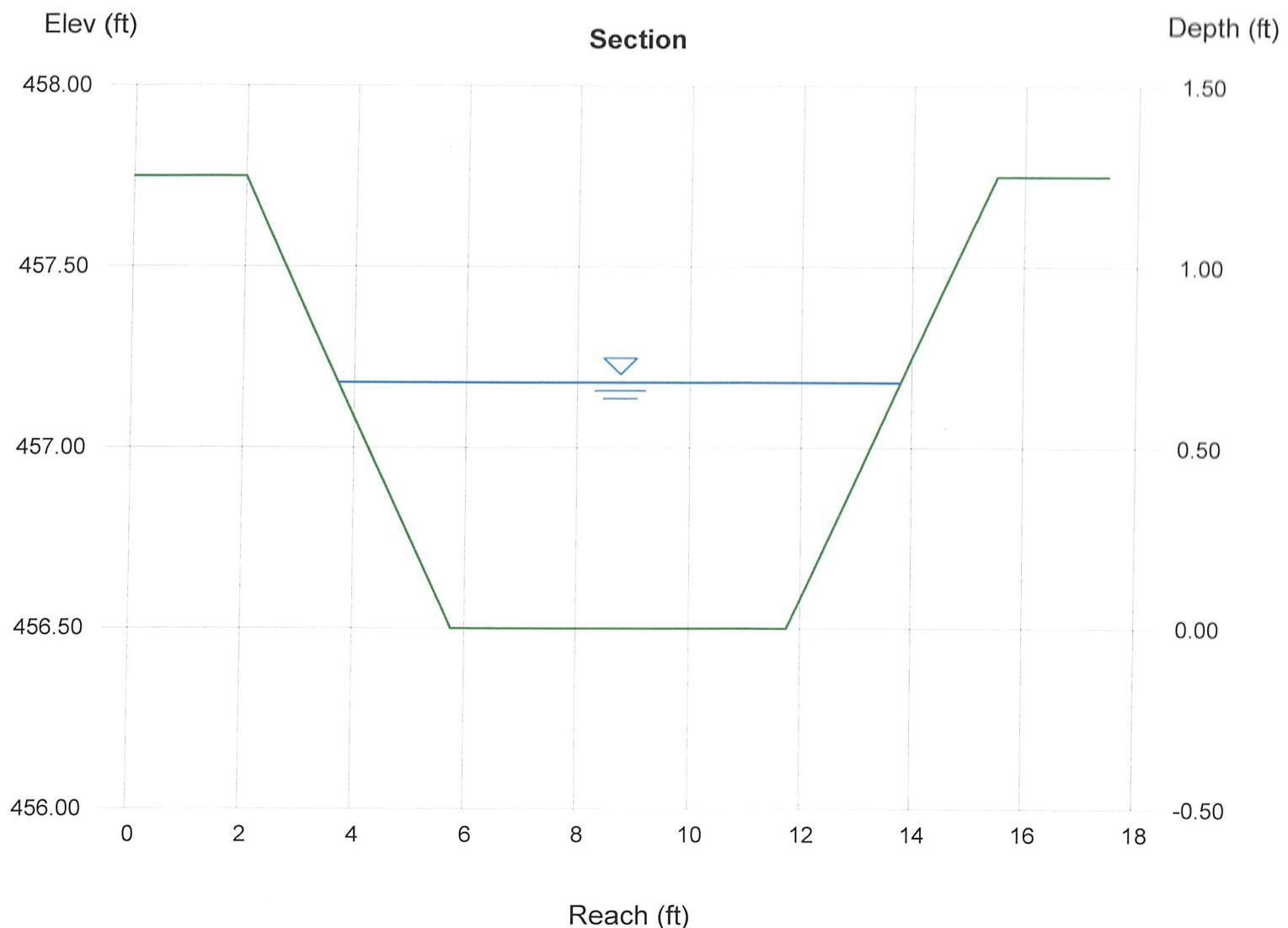
Channel Report

Hydraflow Express by Intelisolve

Saturday, Apr 30 2022, 3:47 PM

Rip-Rap Channel into Pond #2

Trapezoidal


Bottom Width (ft) = 6.00
 Side Slope (z:1) = 3.00
 Total Depth (ft) = 1.25
 Invert Elev (ft) = 456.50
 Slope (%) = 0.33
 N-Value = 0.035

Calculations

Compute by: Known Q
Known Q (cfs) = 8.53

Highlighted

Depth (ft)	= 0.68
Q (cfs)	= 8.530
Area (sqft)	= 5.47
Velocity (ft/s)	= 1.56
Wetted Perim (ft)	= 10.30
Crit Depth, Y_c (ft)	= 0.38
Top Width (ft)	= 10.08
EGL (ft)	= 0.72

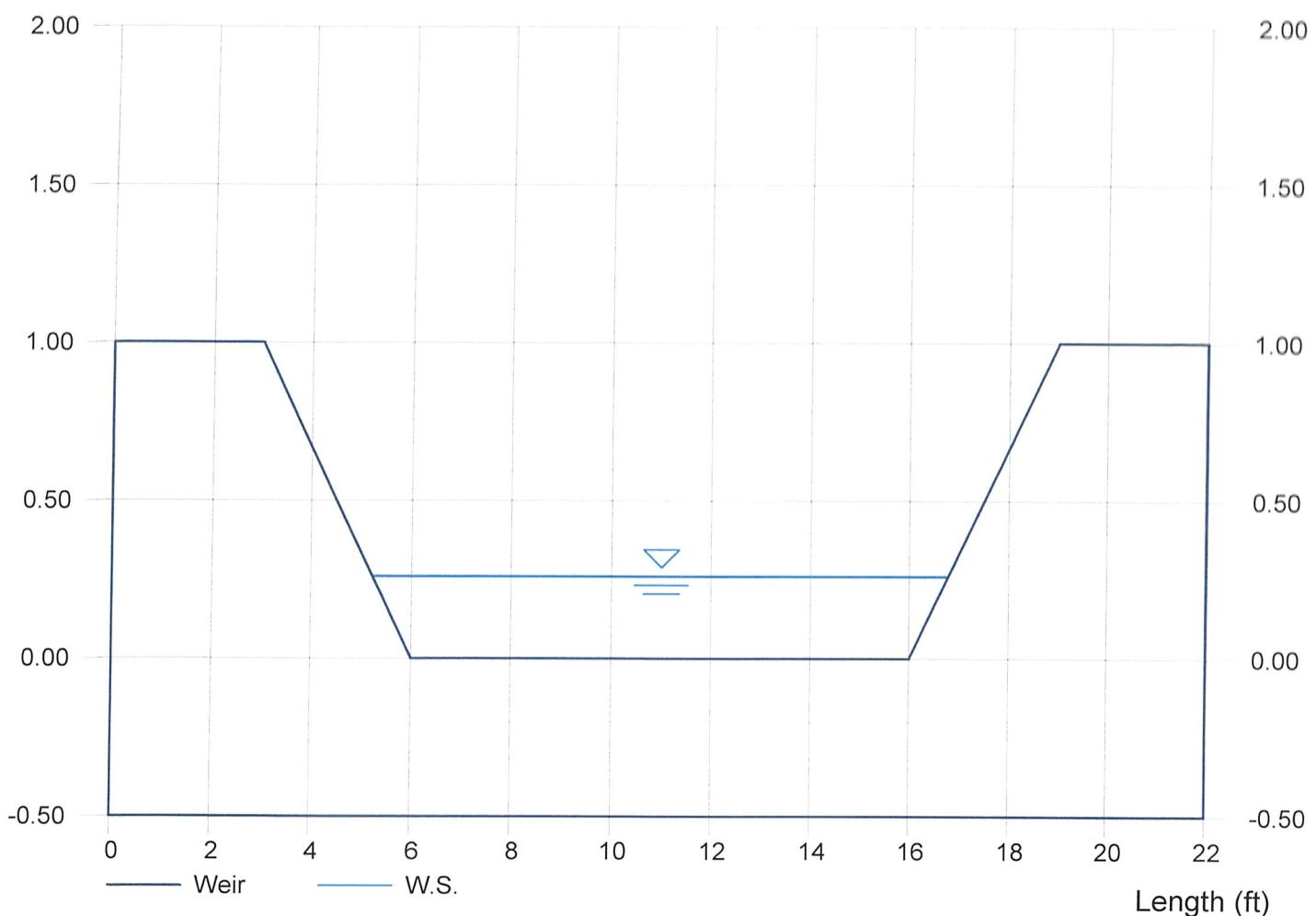
Weir Report

Hydraflow Express by Intelisolve

Monday, May 16 2022, 4:59 PM

Forebay & W.Q. Cell Weir - Level-Spreader - (Max. Flow - Q=4.27 CFS ea. side)

Trapezoidal Weir


Crest = Sharp
 Bottom Length (ft) = 10.00
 Total Depth (ft) = 1.00
 Side Slope (z:1) = 3.00

Highlighted

Depth (ft)	= 0.26
Q (cfs)	= 4.270
Area (sqft)	= 2.80
Velocity (ft/s)	= 1.52
Top Width (ft)	= 11.56

Calculations

Weir Coeff. Cw = 3.10
 Compute by: Known Q
 Known Q (cfs) = 4.27

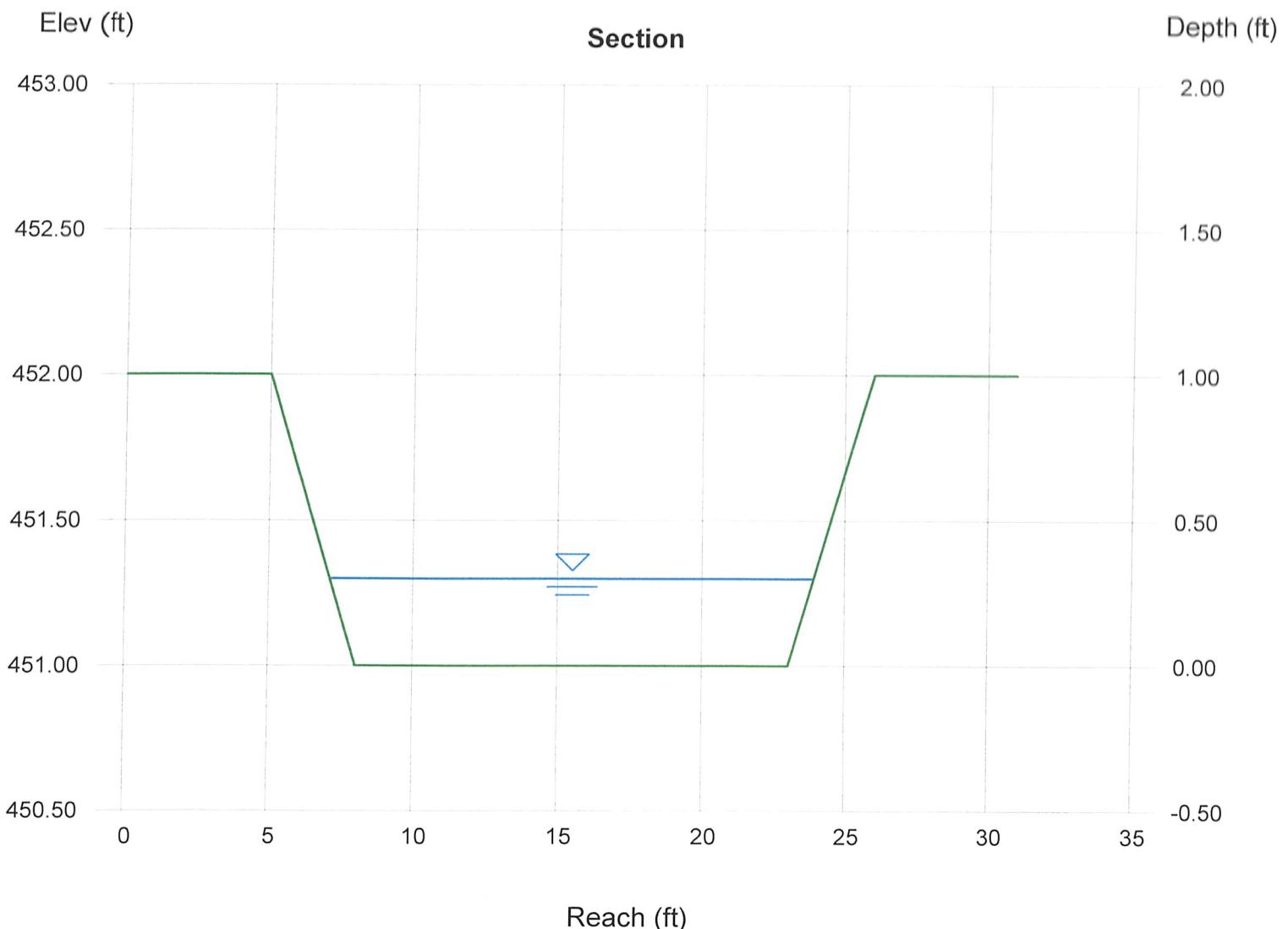
Channel Report

HydraFlow Express by Intelisolve

Wednesday, May 18 2022, 12:35 PM

Rip-Rap Outfall Channel - SWM Pond #2

Trapezoidal


Bottom Width (ft)	= 15.00
Side Slope (z:1)	= 3.00
Total Depth (ft)	= 1.00
Invert Elev (ft)	= 451.00
Slope (%)	= 1.00
N-Value	= 0.035

Calculations

Compute by: Known Q
Known Q (cfs) = 8.53

Highlighted

Depth (ft)	= 0.30
Q (cfs)	= 8.530
Area (sqft)	= 4.77
Velocity (ft/s)	= 1.79
Wetted Perim (ft)	= 16.90
Crit Depth, Yc (ft)	= 0.22
Top Width (ft)	= 16.80
EGL (ft)	= 0.35

24" Entrance Culvert

**TR-55 Peak Discharge & Hydra Flow
Computations**

Worksheet 2: Runoff Curve Number and Runoff

Project: Stanford Industrial Park - Lot 11

By: GLM

Date: 03/26/22

Location: 24" Entrance Culvert

Checked:

Date: 03/26/22

Circle One: Present Developed

1. Runoff curve number (CN):

$$CN \text{ (weighted)} = \frac{\text{Total Product}}{\text{Total Area}}$$

564.53

Totals =

Use CN =

2. Runoff (Q):

Frequency	Yr.
Rainfall, P (24-hour)	in
Runoff, Q	in

(Use P & CN with table 2-1, fig. 2-1, or
eqs. 2-3 and 2-4.)

Storm #1 Storm #2 Storm #3

2	10	100
3.10	5.00	7.00
1.99	3.77	5.71

Worksheet 3: Time of concentration (Tc) or travel time (Tt)

Project: Stanford Industrial Park - Lot 11

By: GLM

Date: 03/26/22

Location: 24" Entrance Culvert

Checked: 0

Date: 03/26/22

Circle One: Present Developed

Circle One: Tc Tt through subarea

Notes: Space for as many as two segments per flow type can be used for each worksheet. Include a map, schematic, or description of flow segments.

Sheet flow (Applicable to Tc Only)

- 1 Surface description (table 3-1).....
- 2 Manning's roughness coefficient, n (table 3-1)
- 3 Flow length, L (total L < 300 ft.)
- 4 Two-Yr. 24-Hour rainfall, P₂
- 5 Land slope, S
- 6
$$Tt = \frac{0.007 (nL)^{0.8}}{P_2^{0.5} S^{0.4}}$$
 Compute Tt

Segment ID:	AB	-
ft	Unpaved	N/A
in	0.24	0.00
ft	100	1
in	3.1	3.1
ft/ft	0.03	0.0001
hr	0.21	+ 0.00 = 0.21

Shallow concentrated flow

- 7 Surface description (paved or unpaved)
- 8 Flow length, L
- 9 Watercourse slope, S
- 10 Average velocity, V (figure 3-1)
- 11
$$Tt = \frac{L}{3600 V}$$
 Compute Tt

Segment ID:	BC	CD
ft	Unpaved	Unpaved
ft	140	95
ft/ft	0.08	0.11
ft/s	4.4	5.3
hr	0.01	+ 0.00 = 0.01

Channel flow

- 12 Cross section flow area, A
- 13 Wetted perimeter, P_w
- 14 Hydraulic radius, R = A/P_w Compute R
- 15 Channel slope, S
- 16 Manning's roughness coefficient, n
- 17
$$\text{Velocity} = 1.49 r^{2/3} s^{1/2}$$
 Compute V
- 18 Flow length, L
- 19
$$Tt = \frac{L}{3600 V}$$
 Compute Tt
- 20 Watershed or subarea Tc or Tt (add Tt in steps 6, 11 & 19)

Segment ID:	DE	EF
ft ²	5.00	6.00
ft	5.00	5.00
ft	1.00	1.20
ft/ft	0.0270	0.0316
ft/s	0.040	0.035
ft/s	6.12	8.54
ft	485	380
hr	0.02	+ 0.01 = 0.03
		Total: hr. 0.25

Worksheet 4: Graphical Peak Discharge Method

Project: Stanford Industrial Park - Lot 11

By: GLM

Date: 03/26/22

Location: 24" Entrance Culvert

Checked:

Date: 03/26/22

Circle One: Present Developed

1 Data:

Drainage area, A_m
 Runoff curve number (RCN)
 Time of concentration (T_c)
 Rainfall distribution type
 Pond & swamp areas spread throughout the watershed
 swamp = $1.0\% \text{ of } A_m$ 0.00 Ac.

$A_m =$	6.35	acres (Ac.)
$A_m =$	0.009922	mile ²
	89	(From worksheet #2)
	0.25	hr. (From worksheet #3)
	II	(I, IA, II, or III)

Storm #1	Storm #2	Storm #3
----------	----------	----------

2 Storm Frequency

Yr. 2	10	100
-------	----	-----

3 Rainfall, P (24-hour)

in 3.10	5.00	7.00
---------	------	------

4 Initial abstractions, I_a
 (use CN with Table 4-1)

in 0.247	0.247	0.247
----------	-------	-------

5 Computed I_a/P

0.080	0.049	0.035
-------	-------	-------

6 Unit peak discharge, q_u
 (use T_c & I_a/P with exhibit 4-II)

csm/in 750	750	750
------------	-----	-----

7 Runoff, Q
 (From worksheet #2)

in 1.99	3.77	5.71
---------	------	------

8 Pond and swamp adjustment factor, F_p
 (use percent pond and swamp area with Table 4-2. Factor is 1.0 for zero (0%) percent pond and swamp area.)

1.00	1.00	1.00
------	------	------

9 Peak discharge, q_p
 (where $q_p = q_u \times A_m \times Q \times F_p$)

cfs 14.81	28.05	42.49
-----------	-------	-------

Culvert Report

Hydraflow Express by InteliSolve

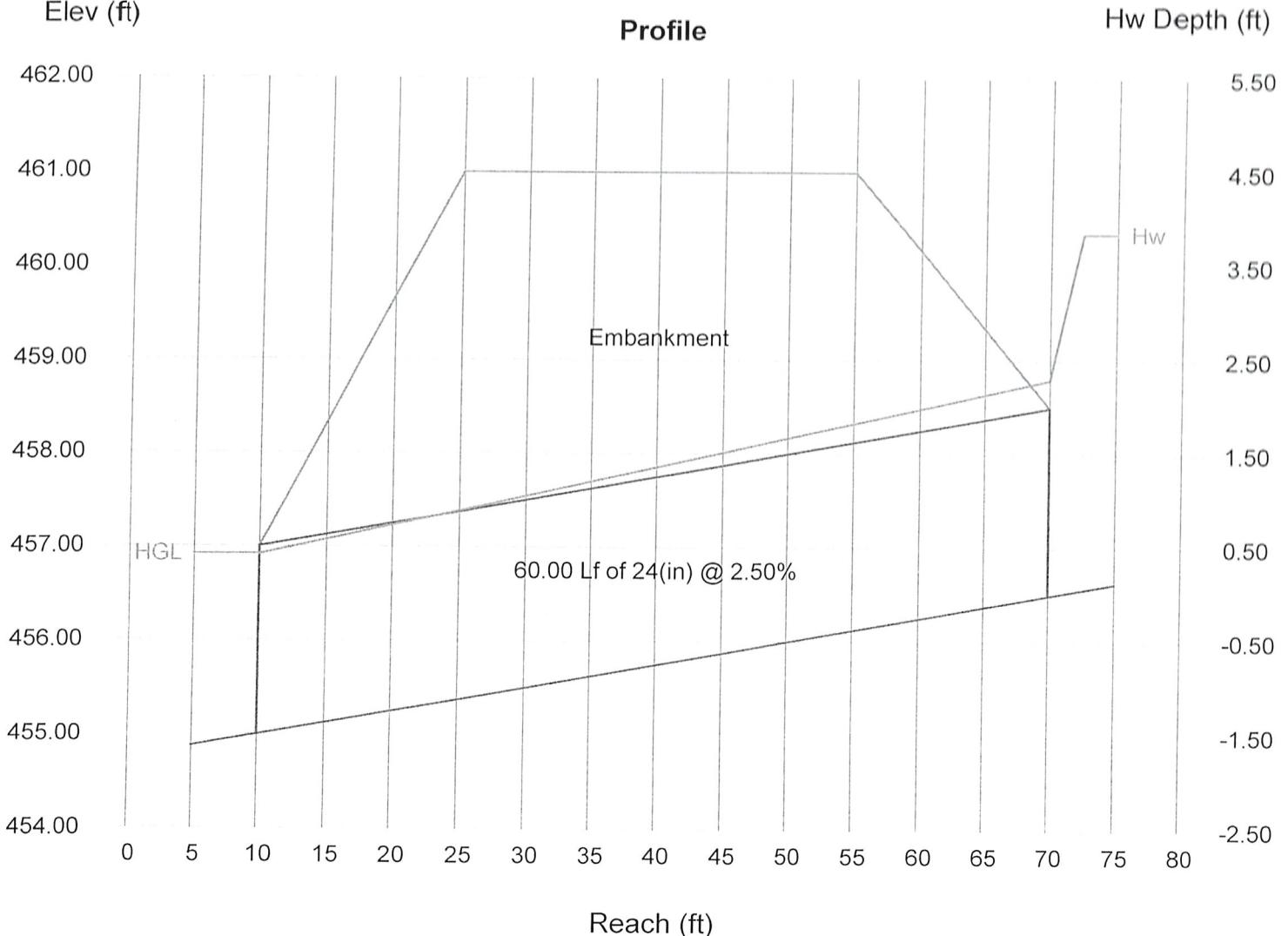
Saturday, Apr 2 2022, 4:10 PM

24-Inch Entrance Culvert Analysis

Invert Elev Dn (ft) = 455.00
 Pipe Length (ft) = 60.00
 Slope (%) = 2.50
 Invert Elev Up (ft) = 456.50
 Rise (in) = 24.0
 Shape = Cir
 Span (in) = 24.0
 No. Barrels = 1
 n-Value = 0.019
 Inlet Edge = Beveled
 Coeff. K,M,c,Y,k = 0.0018, 2.5, 0.03, 0.74, 0.2

Embankment

Top Elevation (ft) = 461.00
 Top Width (ft) = 30.00
 Crest Width (ft) = 50.00


Calculations

Qmin (cfs) = 28.05
 Qmax (cfs) = 28.05
 Tailwater Elev (ft) = $(dc+D)/2$

Highlighted

Qtotal (cfs) = 28.05
 Qpipe (cfs) = 28.05
 Qovertop (cfs) = 0.00
 Veloc Dn (ft/s) = 9.06
 Veloc Up (ft/s) = 8.93
 HGL Dn (ft) = 456.92
 HGL Up (ft) = 458.80
 Hw Elev (ft) = 460.35
 Hw/D (ft) = 1.92
 Flow Regime = Inlet Control

Profile

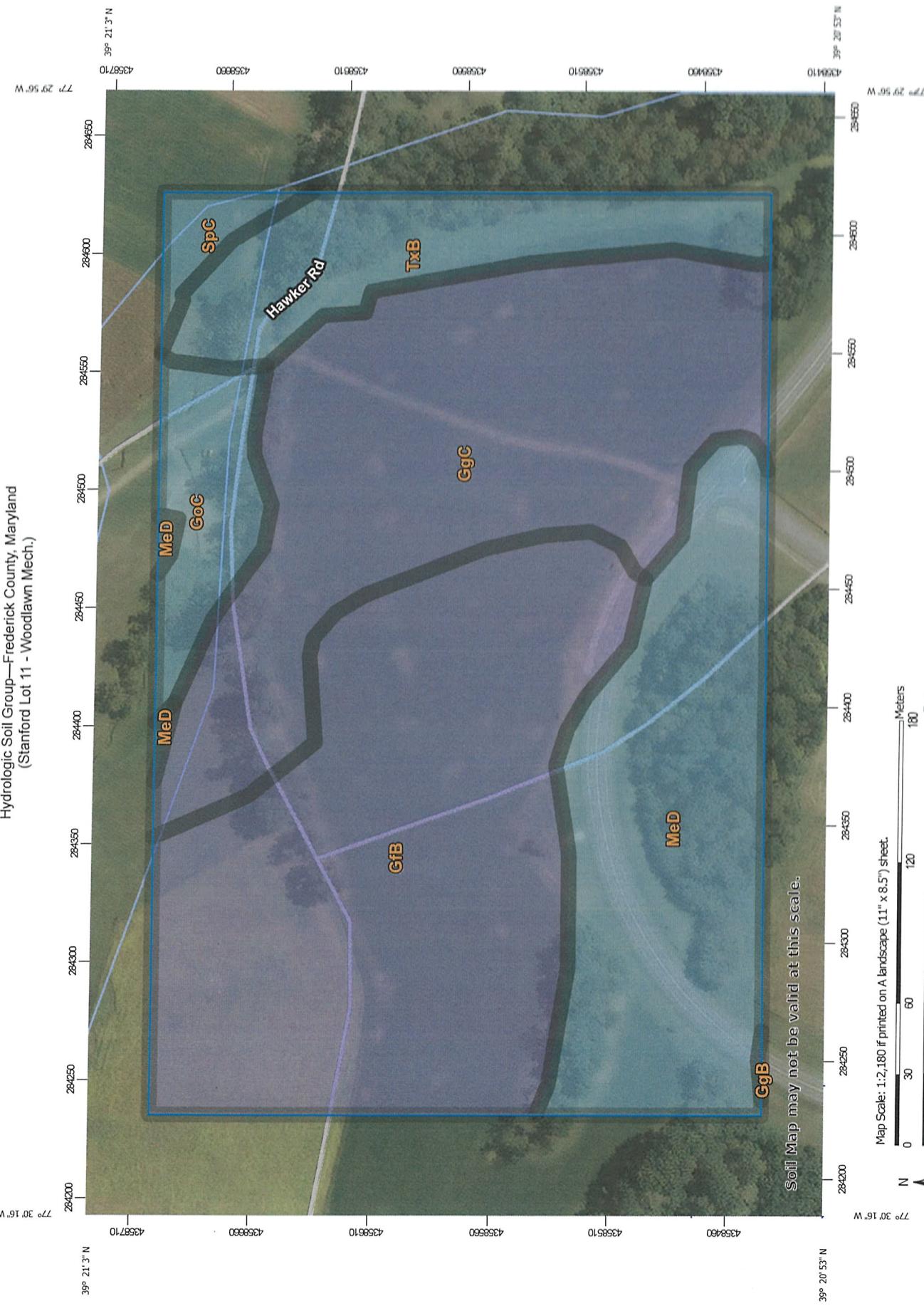
USDA – NRCS Soils Mapping

Soil Map—Frederick County, Maryland
(Stanford Lot 11 - Woodlawn Mech.)

Soil Map may not be valid at this scale.

Map Scale: 1:2,180 if printed on A landscape (11" x 8.5") sheet.

Map projection: Web Mercator
Corner coordinates: WGS84 Edge bits: UTM Zone 18N WGS84
30 60 120 180 Meters
100 200 400 600 Feet


N

Natural Resources
Conservation Service

Web Soil Survey
National Cooperative Soil Survey

Hydrologic Soil Group—Frederick County, Maryland
(Stanford Lot 11 - Woodlawn Mech.)

Soil Map may not be valid at this scale.

Map Scale: 1:2,180 if printed on A landscape (11" x 8.5") sheet.

Map Scale: 1:2,180 if printed on A landscape (11" x 8.5") sheet.

0 30 60 90 120 150 180 Meters

0 100 200 300 400 500 600 Feet

Map direction: West Magnetic

 USDA

Natural Resources
Conservation Service

Web Soil Survey
National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
GfB	Glenelg silt loam, 3 to 8 percent slopes	B	8.7	35.0%
GgB	Glenelg channery loam, 3 to 8 percent slopes	B	0.0	0.0%
GgC	Glenelg gravelly loam, 8 to 15 percent slopes	B	7.2	29.1%
GoC	Glenville silt loam, 8 to 15 percent slopes	C	1.2	4.9%
MeD	Mt. Airy channery loam, 15 to 25 percent slopes	C	5.0	20.2%
SpC	Springwood gravelly loam, 8 to 15 percent slopes	C	0.4	1.5%
TxB	Trego-Foxville complex, 0 to 8 percent slopes	C	2.3	9.4%
Totals for Area of Interest			24.9	100.0%